Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2020, Vol. 40 Issue (12): 18-24    DOI: 10.13523/j.cb.2009025
    
The Application of CRISPR/Cas9 in the Treatment of Human Virus Infection-Related Diseases
WANG Wei-dong,DU Jia-ru,ZHANG Yun-shang,FAN Jian-ming()
School of Public Health, Zhengzhou University,Zhengzhou 450001, China
Download: HTML   PDF(5177KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Viral infection-related diseases pose a serious threat to human health. Current antiviral therapies cannot cure some diseases caused by chronic viral infections, such as AIDS and hepatitis B. Therefore, new treatment methods are urgently needed. Gene-editing technology that can directly target genetic material may become a powerful tool against viruses. As a new programmable nuclease-mediated gene-editing technology, the CRISPR/Cas9 system has been successfully applied to the research of a variety of human-related diseases due to its high editing efficiency, simple operation, low cost, and wide application range. It also provides new technical means for the research of viral infection-related diseases and the development of new treatment methods. The mechanism of the CRISPR/Cas9 system and the latest advances in the treatment of common human viral infection-related diseases were reviewed in the article.



Key wordsVirus infection      CRISPR/Cas9      Gene-editing      Disease treatment     
Received: 14 September 2020      Published: 14 January 2021
ZTFLH:  Q789  
Corresponding Authors: Jian-ming FAN     E-mail: fan5746067@126.com
Cite this article:

WANG Wei-dong,DU Jia-ru,ZHANG Yun-shang,FAN Jian-ming. The Application of CRISPR/Cas9 in the Treatment of Human Virus Infection-Related Diseases. China Biotechnology, 2020, 40(12): 18-24.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2009025     OR     https://manu60.magtech.com.cn/biotech/Y2020/V40/I12/18

Fig.1 Structure of the CRISPR/Cas9 system
Fig.2 Mechanism of the CRISPR/Cas9 system
[1]   Mahfouz M M, Li L, Shamimuzzaman M, et al. De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks. Proc Natl Acad Sci USA, 2011,108(6):2623-2628.
pmid: 21262818
[2]   Doudna J A, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science, 2014,346(6213):1258096.
doi: 10.1126/science.1258096 pmid: 25430774
[3]   Jansen R, Embden J D, Gaastra W, et al. Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol, 2002,43(6):1565-1575.
doi: 10.1046/j.1365-2958.2002.02839.x pmid: 11952905
[4]   Grissa I, Vergnaud G, Pourcel C. The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinformatics, 2007,8(1):172.
[5]   Horvath P, Romero D A, Coûté-Monvoisin A C, et al. Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus. Journal of Bacteriology, 2008,190(4):1401-1412.
doi: 10.1128/JB.01415-07 pmid: 18065539
[6]   Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012,337(6096):816-821.
pmid: 22745249
[7]   Makarova K S, Aravind L, Grishin N V, et al. A DNA repair system specific for thermophilic Archaea and bacteria predicted by genomic context analysis. Nucleic Acids Research, 2002,30(2):482-496.
pmid: 11788711
[8]   Makarova K S, Haft D H, Barrangou R, et al. Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol, 2011,9(6):467-477.
pmid: 21552286
[9]   Garneau J E, Dupuis M è, Villion M, et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature, 2010,468(7320):67-71.
pmid: 21048762
[10]   Deltcheva E, Chylinski K, Sharma C M, et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature, 2011,471(7340):602-607.
pmid: 21455174
[11]   Maartens G, Celum C, Lewin S R. HIV infection: epidemiology, pathogenesis, treatment, and prevention. Lancet, 2014,384(9939):258-271.
doi: 10.1016/S0140-6736(14)60164-1 pmid: 24907868
[12]   Ebina H, Misawa N, Kanemura Y, et al. Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus. Scientific Reports, 2013,3(1):7.
[13]   Chan D C, Kim P S. HIV entry and its inhibition. Cell, 1998,93(5):681-684.
doi: 10.1016/s0092-8674(00)81430-0 pmid: 9630213
[14]   Li C, Guan X M, Du T, et al. Inhibition of HIV-1 infection of primary CD4(+) T-cells by gene editing of CCR5 using adenovirus-delivered CRISPR/Cas9. Journal of General Virology, 2015,96(Pt-8):2381-2393.
[15]   Xu L, Yang H, Gao Y, et al. CRISPR/Cas9-mediated CCR5 ablation in human hematopoietic stem/progenitor cells confers HIV-1 resistance in vivo. Molecular Therapy, 2017,25(8):1782-1789.
doi: 10.1016/j.ymthe.2017.04.027 pmid: 28527722
[16]   Xiao Q Q, Chen S L, Wang Q K, et al. CCR5 editing by Staphylococcus aureus Cas9 in human primary CD4(+) T cells and hematopoietic stem/progenitor cells promotes HIV-1 resistance and CD4(+) T cell enrichment in humanized mice. Retrovirology, 2019,16:17.
doi: 10.1186/s12977-019-0479-9 pmid: 31242909
[17]   Connor R I, Sheridan K E, Ceradini D, et al. Change in coreceptor use correlates with disease progression in HIV-1: infected individuals. The Journal of experimental medicine, 1997,185(4):621-628.
doi: 10.1084/jem.185.4.621 pmid: 9034141
[18]   Wang Q K, Chen S L, Xiao Q Q, et al. Genome modification of CXCR4 by Staphylococcus aureus Cas9 renders cells resistance to HIV-1 infection. Retrovirology, 2017,14(1):12.
doi: 10.1186/s12977-017-0338-5 pmid: 28193275
[19]   Hou P P, Chen S L, Wang S L, et al. Genome editing of CXCR4 by CRISPR/cas9 confers cells resistant to HIV-1 infection. Scientific Reports, 2015,5(1):12.
[20]   Liu Z P, Chen S L, Jin X, et al. Genome editing of the HIV co-receptors CCR5 and CXCR4 by CRISPR-Cas9 protects CD4(+) T cells from HIV-1 infection. Cell and Bioscience, 2017,7(1):15.
doi: 10.1186/s13578-017-0142-x
[21]   Trepo C, Chan H L Y, Lok A. Hepatitis B virus infection. Lancet, 2014,384(9959):2053-2063.
doi: 10.1016/S0140-6736(14)60220-8 pmid: 24954675
[22]   Maepa M B, Jacobs R, Van Den Berg F, et al. Recent developments with advancing gene therapy to treat chronic infection with hepatitis B virus. Current Opinion in Hiv and Aids, 2020,15(3):200-207.
doi: 10.1097/COH.0000000000000623 pmid: 32141890
[23]   Ramanan V, Shlomai A, Cox D B T, et al. CRISPR/Cas9 cleavage of viral DNA efficiently suppresses hepatitis B virus. Scientific Reports, 2015,5(1):10833.
[24]   Wang J, Xu Z W, Liu S, et al. Dual gRNAs guided CRISPR/Cas9 system inhibits hepatitis B virus replication. World Journal of Gastroenterology, 2015,21(32):9554-9565.
doi: 10.3748/wjg.v21.i32.9554 pmid: 26327763
[25]   Li H, Sheng C Y, Wang S, et al. Removal of integrated hepatitis B virus DNA using CRISPR-Cas9. Frontiers in Cellular and Infection Microbiology, 2017,7:91.
doi: 10.3389/fcimb.2017.00091 pmid: 28382278
[26]   Liu Y, Zhao M X, Gong M X, et al. Inhibition of hepatitis B virus replication via HBV DNA cleavage by Cas9 from Staphylococcus aureus. Antiviral Research, 2018,152:58-67.
doi: 10.1016/j.antiviral.2018.02.011 pmid: 29458131
[27]   Song J, Zhang X C, Ge Q Y, et al. CRISPR/Cas9-mediated knockout of HBsAg inhibits proliferation and tumorigenicity of HBV-positive hepatocellular carcinoma cells. Journal of Cellular Biochemistry, 2018,119(10):8419-8431.
pmid: 29904948
[28]   Zhou S J, Deng Y L, Liang H F, et al. Hepatitis B virus X protein promotes CREB-mediated activation of miR-3188 and Notch signaling in hepatocellular carcinoma. Cell Death and Differentiation, 2017,24(9):1577-1587.
doi: 10.1038/cdd.2017.87 pmid: 28574502
[29]   Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2018,68(6):394-424.
doi: 10.3322/caac.21492 pmid: 30207593
[30]   Yeo-Teh N S L, Ito Y, Jha S. High-risk human papillomaviral oncogenes E6 and E7 target key cellular pathways to achieve oncogenesis. Int J Mol Sci, 2018,19(6):1706.
doi: 10.3390/ijms19061706
[31]   Zhen S, Hua L, Takahashi Y, et al. In vitro and in vivo growth suppression of human papillomavirus 16-positive cervical cancer cells by CRISPR/Cas9. Biochemical and Biophysical Research Communications, 2014,450(4):1422-1426.
doi: 10.1016/j.bbrc.2014.07.014
[32]   Zhen S, Lu J J, Wang L J, et al. In vitro and in vivo synergistic therapeutic effect of cisplatin with human papillomavirus16 E6/E7 CRISPR/Cas9 on cervical cancer cell line. Translational Oncology, 2016,9(6):498-504.
doi: 10.1016/j.tranon.2016.10.002 pmid: 27816686
[33]   Pirouzfar M, Amiri F, Dianatpour M, et al. CRISPR/Cas9-mediated knockout of MLL5 enhances apoptotic effect of cisplatin in HeLa cells in vitro. Excli Journal, 2020,19:170-182.
doi: 10.17179/excli2019-1957 pmid: 32194363
[34]   Zhong S, Zhang Y, Yin X, et al. CDK7 inhibitor suppresses tumor progression through blocking the cell cycle at the G2/M phase and inhibiting transcriptional activity in cervical cancer. Oncotargets and Therapy, 2019,12:2137-2147.
doi: 10.2147/OTT
[35]   Ling K, Yang L, Yang N, et al. Gene targeting of HPV18 E6 and E7 synchronously by nonviral transfection of CRISPR/Cas9 system in cervical cancer. Human Gene Therapy, 2020,31(5-6):297-308.
doi: 10.1089/hum.2019.246 pmid: 31989837
[36]   Van Diemen F R, Kruse E M, Hooykaas M J G, et al. CRISPR/Cas9-mediated genome editing of herpesviruses limits productive and latent infections. Plos Pathogens, 2016,12(6):29.
[37]   Turner E M, Brown R S H, Laudermilch E, et al. The Torsin activator LULL1 is required for efficient growth of herpes simplex virus 1. Journal of Virology, 2015,89(16):8444-8452.
doi: 10.1128/JVI.01143-15 pmid: 26041288
[38]   Roehm P C, Shekarabi M, Wollebo H S, et al. Inhibition of HSV-1 replication by gene editing strategy. Scientific Reports, 2016,6(5457):23146.
[39]   Latif M B, Raja R, Kessler P M, et al. Relative contributions of the cGAS-STING and TLR3 signaling pathways to attenuation of herpes simplex virus 1 replication. Journal of Virology, 2020,94(6):e01717-19.
doi: 10.1128/JVI.01717-19 pmid: 31896590
[40]   Young L S, Rickinson A B. Epstein-Barr virus: 40 years on. Nat Rev Cancer, 2004,4(10):757-768.
doi: 10.1038/nrc1452 pmid: 15510157
[41]   Su S, Zou Z, Chen F, et al. CRISPR-Cas9-mediated disruption of PD-1 on human T cells for adoptive cellular therapies of EBV positive gastric cancer. Oncoimmunology, 2017,6(1):e1249558.
doi: 10.1080/2162402X.2016.1249558 pmid: 28197365
[42]   Yuen K S, Wang Z M, Wong N H M, et al. Suppression of Epstein-Barr virus DNA load in latently infected nasopharyngeal carcinoma cells by CRISPR/Cas9. Virus Research, 2018,244:296-303.
doi: 10.1016/j.virusres.2017.04.019 pmid: 28456574
[43]   Huo H, Hu G. CRISPR/Cas9-mediated LMP1 knockout inhibits Epstein-Barr virus infection and nasopharyngeal carcinoma cell growth. Infectious Agents and Cancer, 2019,14(4):30.
doi: 10.1186/s13027-019-0246-5
[44]   Janoly-Dumenil A, Rouvet I, Bleyzac N, et al. A pharmacodynamic model of ganciclovir antiviral effect and toxicity for lymphoblastoid cells suggests a new dosing regimen to treat cytomegalovirus infection. Antimicrobial Agents and Chemotherapy, 2012,56(7):3732-3738.
doi: 10.1128/AAC.06423-11 pmid: 22526305
[45]   King M W, Munger J. Editing the human cytomegalovirus genome with the CRISPR/Cas9 system. Virology, 2019,529:186-194.
doi: 10.1016/j.virol.2019.01.021 pmid: 30716580
[46]   Gergen J, Coulon F, Creneguy A, et al. Multiplex CRISPR/Cas9 system impairs HCMV replication by excising an essential viral gene. PLoS One, 2018,13(2):e0192602.
doi: 10.1371/journal.pone.0192602 pmid: 29447206
[47]   Tai-Schmiedel J, Karniely S, Lau B, et al. Human cytomegalovirus long noncoding RNA4.9 regulates viral DNA replication. PLoS Pathogens, 2020,16(4):e1008390.
doi: 10.1371/journal.ppat.1008390 pmid: 32294138
[48]   He M, Yuan H, Tan B, et al. SIRT1-mediated downregulation of p27(Kip1) is essential for overcoming contact inhibition of Kaposi’s sarcoma-associated herpesvirus transformed cells. Oncotarget, 2016,7(46):75698-75711.
doi: 10.18632/oncotarget.12359 pmid: 27708228
[49]   Tso F Y, West J T, Wood C. Reduction of kaposi’s sarcoma-associated herpesvirus latency using CRISPR-Cas9 to edit the latency-associated nuclear antigen gene. Journal of Virology, 2019,93(7):e02183-18.
doi: 10.1128/JVI.02183-18 pmid: 30651362
[1] WU Xiu-zhi,WANG Hong-jie,ZU Yao. Functional Study of hoxa1a Regulating Craniofacial Bone Development in Zebrafish[J]. China Biotechnology, 2021, 41(9): 20-26.
[2] BI Bo,ZHANG Yu,ZHAO Hui. Application of Yeast Hybrid System in Study of Off-target Rate of CRISPR/Cas9 Gene Editing System[J]. China Biotechnology, 2021, 41(6): 27-37.
[3] WANG Yan-mei,KOU Hang,MA Mei,SHEN Yu-yu,ZHAO Bao-ding,LU Fu-ping,LI Ming. CRISPR/Cas9-mediated Inactivation of the Pectinase Gene in Aspergillus niger and Evaluation of the Mutant Strain[J]. China Biotechnology, 2021, 41(5): 35-44.
[4] GUO Yang,CHEN Yan-juan,LIU Yi-chen,WANG Hai-jie,WANG Cheng-ji,WANG Jue,WAN Ying-han,ZHOU Yu,XI Jun,SHEN Ru-ling. Pd-1 Gene Knockout Mouse Model Construction and Preliminary Phenotype Verification[J]. China Biotechnology, 2021, 41(10): 1-11.
[5] GUO Yang,WAN Ying-han,WANG Jue,GONG Hui,ZHOU Yu,CI Lei,WAN Zhi-peng,SUN Rui-lin,FEI Jian,SHEN Ru-ling. Toll-like Receptor 4 (TLR4) Gene Knockout Mouse Model Construction and Preliminary Phenotypic Analysis[J]. China Biotechnology, 2020, 40(6): 1-9.
[6] HUANG Sheng, YAN Qi-tao, XIONG Shi-lin, PENG Yi-qi, ZHAO Rui. Construction of CHD5 Gene Overexpressing Lentiviral Vector Based on CRISPR/Cas9-SAM System and the Effect of CHD5 on Proliferation, Migration and Invasion in T24 Cells[J]. China Biotechnology, 2020, 40(3): 1-8.
[7] LEI Hai-ying,ZHAO Qing-song,BAI Feng-lin,SONG Hui-fang,WANG Zhi-jun. Identification of Developing-related Gene ZmCen Using CRISPR/Cas9 in Maize[J]. China Biotechnology, 2020, 40(12): 49-57.
[8] WANG Yue,MU Yan-shuang,LIU Zhong-hua. Progress of CRISPR/Cas Base Editing System[J]. China Biotechnology, 2020, 40(12): 58-66.
[9] WANG Zhi-min,BI Mei-yu,HE Jia-fu,Ren Bing-xu,LIU Dong-jun. Development of CRISPR/Cas9 System and Its Application in Animal Gene Editing[J]. China Biotechnology, 2020, 40(10): 43-50.
[10] Lu JIAN,Ying-hui HUANG,Tian-ya LIANG,Li-min WANG,Hong-tao MA,Ting ZHANG,Dan-yang LI,Ming-lian WANG. Generation of JAK2 Gene Knockout K562 Cell Line by CRISPR/Cas9 System[J]. China Biotechnology, 2019, 39(7): 39-47.
[11] Song-tao ZHOU,Yun CHEN,Xiao-hai GONG,Jian JIN,Hua-zhong LI. Using CRISPR/Cas9 Technology to Construct Human Serum Albumin CHO Stable Expression Cell Line[J]. China Biotechnology, 2019, 39(4): 52-59.
[12] WAN Ying-han,CI Lei,WANG Jue,GONG Hui,LI Jun,DONG Ru,SUN Rui-lin,FEI Jian,SHEN Ru-ling. Construction and Preliminary Phenotypic Verification of PD-L1 Knockout Mice[J]. China Biotechnology, 2019, 39(12): 42-49.
[13] YANG Chun-yan,WANG Lei,MU Deng-cai,LI Fang-fang,SHEN Hao,ZHENG Shang-yong. Advances of Gene Editing in Disease Treatment[J]. China Biotechnology, 2019, 39(11): 87-95.
[14] Sai-bao LIU,Ya-fang LI,Hui WANG,Wei WANG,Duo-liang RAN,Hong-yan CHEN,Qing-wen MENG. Construction of Influenza Virus High-producing Cell Line MDCK-Tpl2 -/- with CRISPR / Cas9[J]. China Biotechnology, 2019, 39(1): 46-54.
[15] Hai-feng PAN,Han YANG,Si-yuan YU,Ting-dong LI,Sheng-xiang GE. Progress in Gene Editing Methods of CRISPR/Cas9 Based on in Vitro Assembly of Ribonucleoprotein[J]. China Biotechnology, 2019, 39(1): 71-76.