Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2022, Vol. 42 Issue (9): 93-104    DOI: 10.13523/j.cb.2203017
    
Research Progress on Polyphenol-based Quorum Sensing Interfering
WANG Man-man1,2,WU Sheng-bo1,2,WU Hao3,ZHANG Peng1,2,ZHANG Yu-miao1,QIAO Jian-jun1,2,3,4,CAIYIN Qing-ge-le1,2,***()
1. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
2. Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Tianjin 300072, China
3. Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing 312300, China
4. Synthetic Biology Research Platform, Tianjin Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
Download: HTML   PDF(1322KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Polyphenols, a typical class of natural products in our daily diet, have functions of interfering with molecular signaling pathways, affecting the composition of gut microbiota, and protecting human health. Biofilm formation and microbial pathogenicity can be interfered by various polyphenols targeting different microbial quorum sensing (QS) systems, which provides a theoretical basis for the clinical applications of polyphenols. However, the complexity of polyphenol-based interference involves multifarious compounds, various microorganisms and intricate microbial phenotypes. First, a brief summary of types, sources, and amounts of polyphenols is introduced, including flavonoids, phenolic acids, stilbene, lignans, and others based on the number of phenolic rings and structural elements. Then the polyphenol-based interference targeting diverse QS-relevant phenotypes is summarized, including microbial motility, microbial adhesion, biofilm formation, and the release of virulence factors. Furthermore, various interference effects of some common polyphenols on the typical pathogens are summarized to contribute to potential applications. Finally, some key challenges and general perspectives on polyphenol-based interference for various future therapeutic applications are identified.



Key wordsAntibiotic resistance      Quorum sensing interference      Polyphenols      Biofilm     
Received: 08 March 2022      Published: 10 October 2022
ZTFLH:  Q93  
Corresponding Authors: Qing-ge-le CAIYIN     E-mail: qinggele@tju.edu.cn
Cite this article:

WANG Man-man,WU Sheng-bo,WU Hao,ZHANG Peng,ZHANG Yu-miao,QIAO Jian-jun,CAIYIN Qing-ge-le. Research Progress on Polyphenol-based Quorum Sensing Interfering. China Biotechnology, 2022, 42(9): 93-104.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2203017     OR     https://manu60.magtech.com.cn/biotech/Y2022/V42/I9/93

分类 亚类 结构 典型分子 来源 含量 参考文献
黄酮类 黄酮醇 槲皮素、山柰酚、杨梅素、异鼠李素 浆果、蔬菜、茶、葡萄酒 120 mg/100g洋葱、5.73 mg/100 g浆果 [25,43]
黄烷醇 (+)-儿茶素、(+)-表儿茶素 水果、红酒、绿茶、可可制品、谷物 25 mg/100 g杏仁、30 mg/100 mL红酒 [25,44]
黄烷酮 柚皮素、柚皮苷、橙皮素、橙皮苷 柑橘类水果、果汁 35~147 mg/100 g橙子、18~74 mg/100 mL柑橘类果汁 [45-47]
黄酮 芹菜素、木犀草素 茶、干草药、果汁、葡萄酒、蔬菜、谷物 5 320 mg/100 g洋甘菊、1 350 mg/100 g欧芹叶、15~35 mg/100 g小米 [48]
异黄酮 葛根素、大豆素 大豆及其制品 58~380 mg/100 g大豆、3~17 mg/100 mL豆乳 [25,49]
花青素 矢车菊色素、锦葵色素、葡萄皮红色素 水果、谷物、葡萄酒、蔬菜 200~400 mg/100 g黑加仑或黑莓、200~35 mg/100 mL葡萄酒、72 mg/100 mL红酒 [25,50]
酚酸类 羟基苯
甲酸
儿茶酸、没食子酸、丁香酸、水杨酸 菊科香料、草本植物 73~108 mg/100 g大茴香、346~907 mg/100 g栗子 [24,51]
羟基肉
桂酸
对香豆酸、咖啡酸、阿魏酸、绿原酸、奎尼酸 咖啡、茶、葡萄酒、可可、水果、蔬菜和谷物 147 mg/100 g蓝莓、87 mg/100 g咖啡、6~140 mg/L葡萄 [24
48-52]
芪类 - 白藜芦醇 花生、葡萄酒、水果 1.5~2.2 mg/100 mL葡萄酒 [25,53]
木脂
素类
经典
木脂素
亚麻木脂素、芝麻素、丁香树脂醇 亚麻籽、谷物、水果、蔬菜、豆科植物 370 mg/100 g亚麻籽 [25]
新木
质素
厚朴酚、和厚朴酚、异厚朴酚、厚朴新酚 不同植物,如玉兰树的根 - [54]
其他 酪醇 酪醇、羟基酪醇、橄榄多酚、川芎甙 啤酒、葡萄酒、橄榄油 5.73 mg/100 mL雪莉酒、
14.42 mg/100 g橄榄
[37]
烷基酚 4-乙基苯酚、4-乙烯基苯酚、4-乙基邻苯二酚、4-甲基邻苯二酚 啤酒、咖啡 0.13 mg/100 mL咖啡 [37]
Table 1 Classification, structure and sources of common polyphenols
Fig.1 Microbial biofilm formation process and potential interference factors
Fig.2 Polyphenols interfering on different QS-related phenotypes of P. aeruginosa
多酚 CID 浓度/
(μg·mL-1)
细菌 生理活性干扰 效果 参考文献
丁香酚 3 314 0.05 EHEC 生物膜的形成和菌体运动性 [75-77]
0.05 EHEC 菌毛、纤维素、运动性和QS相关基因
0.05 E. coli K-12 卷曲菌毛的产生
0.4 MRSA 生物膜的形成和细胞渗透性
0.1 MRSA 生物膜和肠毒素相关基因
66 P. aeruginosa PAO1 生物膜的形成
33 P. aeruginosa PAO1 菌体运动性
66 P. aeruginosa PAO1 laspqs系统相关基因
25 C. violaceum CV026 紫色杆菌素的产生
8 P. aeruginosa PAO1 绿脓菌素的产生
33 P. aeruginosa PAO1 弹性蛋白酶的产生
香芹酚 10 364 150 E. coli O157:H7 鞭毛蛋白的合成 [6,56 -57
150 E. coli O157:H7 菌体运动性 [78-79]
60 S. Typhimurium DT104 菌体运动性
75 S. Typhimurium DT104 对猪上皮细胞的侵袭能力
15 C. violaceum ATCC 12472 生物膜的形成
113 S. Typhimurium DT104 生物膜的形成
75 S. aureus 0074 生物膜的形成
15 C. violaceum 紫色杆菌素的产生
30 C. violaceum 几丁质酶活性
64 Escherichia cloaca C4 生物膜、菌毛和EPS的表达
32 E. cloaca C4 菌体运动性
64 E. cloaca C4 胞外多糖和生物膜的产生
25 S. mutans ATCC 25175 自溶素和超氧化物歧化酶的表达
没食子酸 370 1 000 P. aeruginosaATCC 10145 菌体运动性和黏附性 [80-81]
1 000 S. aureus CECT 976 菌体运动性和黏附性
1 000 S. aureus CECT 976 生物膜的形成
1 000 L. monocytogenes ATCC 15313 菌体运动性和黏附性
1 000 L. monocytogenes ATCC 15313 生物膜的形成
1 000 E. coli CECT434 菌体运动性
1 000 E. coli CECT434 生物膜的形成
香豆素 323 200 P. aeruginosa AHL介导的QS系统相关基因 [82-85]
200 P. aeruginosa PAO1 las、rhl和pqs系统相关基因
200 P. aeruginosa PA14 生物膜的形成和菌体运动性
200 P. aeruginosa PA14 吩嗪的产生
200 Burkholderia cepacia NCTC10743 蛋白酶活性
200 Aliivibrio fischeri MJ11 生物发光
365 S. typhimurium ATCC 14028 生物膜、菌毛和纤维素的产生
多酚 CID 浓度/
(μg·mL-1)
细菌 生理活性干扰 效果 参考文献
365 S. typhimurium ATCC 14028 生物膜相关基因
365 S. typhimurium ATCC 14028 菌体运动性
292 P. aeruginosa 绿脓菌素和蛋白酶的产生
100 S. aureus MTCC 96 生物膜的形成和菌体运动性
表没食子儿茶素没食子酸酯(epigallocatechin
gallate,EGCG)
65 064 275 Gram-negative bacteria C4-、C6-、和C10-HSLs介导的生物膜
和EPS的形成
[86-89]
275 Gram-negative bacteria C4-、C6-、和C10-HSLs介导的表型
0.1 P. aeruginosa 淀粉样纤维的结构重塑
0.1 P. aeruginosa QS系统相关基因
20 L. monocytogenes ATCC 19114 生物膜的形成和菌体运动性
40 L. monocytogenes ATCC 19114 溶血活性
40 L. monocytogenes ATCC 19114 QS和毒力因子相关基因
250 Shewanella baltica XH2 生物膜的形成
250 S. baltica XH2 菌体运动性
250 S. baltica XH2 外切酶和信号分子的活性
250 S. baltica XH2 QS系统相关基因
250 S. baltica XH2 AI-2和胞外多糖的产生
姜黄素 1 794 427 150 Gram-negative bacteria C4-和C6-HSLs介导的生物膜和EPS
的形成
[69,86
90-93]
150 Gram-negative bacteria C4-和C6-HSLs介导的表型
2 P. aeruginosa PAO1 生物膜的形成
1.5 P. aeruginosa PAO1 绿脓菌素的产生
3 P. aeruginosa PAO1 蛋白酶活性和菌体运动性
1 P. aeruginosa PAO1 弹性蛋白酶活性
1 P. aeruginosa PAO1 信号分子的浓度
1~3 P. aeruginosa PAO1 QS系统相关基因
25 V. harveyi MTCC3438 生物发光
100 Vibrio 菌体运动性
50 Vibrio 生物膜的形成
25 Vibrio 胞外多糖和藻酸盐的产生
5 Vibrio β-半乳糖苷酶和蛋白酶活性
25 C. violaceum QS系统产物
25 Serratia marcescens FJ584421 QS系统产物
100 E. coli ATCC10536 生物膜的形成
3.7 S. mutans 生物膜的形成
白藜芦醇 445 858 100 MRSA 生物膜的形成 [70-71
,74,94-95]
100 MRSA QS、表面和分泌蛋白、荚膜多糖相关
基因的表达
多酚 CID 浓度/
(μg·mL-1)
细菌 生理活性干扰 效果 参考文献
68 P. aeruginosa PAO1 绿脓菌素的产生
23 P. aeruginosa PAO1 菌体运动性
10 C. violaceum CV026 紫色杆菌素的产生
20 Yersinia enterocolitica CECT4315 CECT494;Erwinia carotovora CECT225 and C. violaceum AHL的浓度
Table 2 Polyphenol-based interference on various microbial phenotypes
[1]   Berti A D, Hirsch E B. Tolerance to antibiotics affects response. Science, 2020, 367(6474): 141-142.
doi: 10.1126/science.aba0150 pmid: 31919206
[2]   Wu S B, Liu C J, Feng J, et al. QSIdb: quorum sensing interference molecules. Briefings in Bioinformatics, 2020, 22(4): bbaa218.
[3]   Defoirdt T. Quorum-sensing systems as targets for antivirulence therapy. Trends in Microbiology, 2018, 26(4): 313-328.
doi: S0966-842X(17)30232-9 pmid: 29132819
[4]   Li Q, Ren Y, Fu X. Inter-kingdom signaling between gut microbiota and their host. Cellular and Molecular Life Sciences, 2019, 76(12): 2383-2389.
doi: 10.1007/s00018-019-03076-7 pmid: 30911771
[5]   Wu S B, Liu J H, Liu C J, et al. Quorum sensing for population-level control of bacteria and potential therapeutic applications. Cellular and Molecular Life Sciences: CMLS, 2020, 77(7): 1319-1343.
doi: 10.1007/s00018-019-03326-8
[6]   Burt S A, Ojo-Fakunle V T A, Woertman J, et al. The natural antimicrobial carvacrol inhibits quorum sensing in Chromobacterium violaceum and reduces bacterial biofilm formation at sub-lethal concentrations. PLoS One, 2014, 9(4): e93414.
doi: 10.1371/journal.pone.0093414
[7]   Grobas I, Bazzoli D G, Asally M. Biofilm and swarming emergent behaviours controlled through the aid of biophysical understanding and tools. Biochemical Society Transactions, 2020, 48(6): 2903-2913.
doi: 10.1042/BST20200972 pmid: 33300966
[8]   Wu S B, Xu C Y, Liu J H, et al. Vertical and horizontal quorum-sensing-based multicellular communications. Trends in Microbiology, 2021, 29(12): 1130-1142.
doi: 10.1016/j.tim.2021.04.006 pmid: 34020859
[9]   Nain Z, Mansur F J, Syed S B, et al. Inhibition of biofilm formation, quorum sensing and other virulence factors in Pseudomonas aeruginosa by polyphenols of Gynura procumbens leaves. Journal of Biomolecular Structure & Dynamics, 2022, 40(12): 5357-5371.
[10]   Zeng Z R, Qian L, Cao L X, et al. Virtual screening for novel quorum sensing inhibitors to eradicate biofilm formation of Pseudomonas aeruginosa. Applied Microbiology and Biotechnology, 2008, 79(1): 119-126.
doi: 10.1007/s00253-008-1406-5
[11]   Stephens K, Bentley W E. Synthetic biology for manipulating quorum sensing in microbial consortia. Trends in Microbiology, 2020, 28(8): 633-643.
doi: S0966-842X(20)30080-9 pmid: 32340782
[12]   Murugayah S A, Gerth M L. Engineering quorum quenching enzymes: progress and perspectives. Biochemical Society Transactions, 2019, 47(3): 793-800.
doi: 10.1042/BST20180165 pmid: 31064863
[13]   Zhao Y Y, Jiang Q. Roles of the polyphenol-gut microbiota interaction in alleviating colitis and preventing colitis-associated colorectal cancer. Advances in Nutrition, 2021, 12(2): 546-565.
doi: 10.1093/advances/nmaa104 pmid: 32905583
[14]   Ugurlu A, Karahasan Yagci A, Ulusoy S, et al. Phenolic compounds affect production of pyocyanin, swarming motility and biofilm formation of Pseudomonas aeruginosa. Asian Pacific Journal of Tropical Biomedicine, 2016, 6(8): 698-701.
doi: 10.1016/j.apjtb.2016.06.008
[15]   McCall J, Hidalgo G, Asadishad B, et al. Cranberry impairs selected behaviors essential for virulence in Proteus mirabilis HI4320. Canadian Journal of Microbiology, 2013, 59(6): 430-436.
doi: 10.1139/cjm-2012-0744
[16]   Neto C C, Penndorf K A, Feldman M, et al. Characterization of non-dialyzable constituents from cranberry juice that inhibit adhesion, co-aggregation and biofilm formation by oral bacteria. Food & Function, 2017, 8(5): 1955-1965.
[17]   Oh D R, Kim J R, Kim Y R. Genistein inhibits Vibrio vulnificus adhesion and cytotoxicity to HeLa cells. Archives of Pharmacal Research, 2010, 33(5): 787-792.
doi: 10.1007/s12272-010-0520-y
[18]   Vandeputte O M, Kiendrebeogo M, Rasamiravaka T, et al. The flavanone naringenin reduces the production of quorum sensing-controlled virulence factors in Pseudomonas aeruginosa PAO1. Microbiology (Reading, England), 2011, 157(Pt 7): 2120-2132.
doi: 10.1099/mic.0.049338-0
[19]   Paczkowski J E, Mukherjee S, McCready A R, et al. Flavonoids suppress Pseudomonas aeruginosa virulence through allosteric inhibition of quorum-sensing receptors. Journal of Biological Chemistry, 2017, 292(10): 4064-4076.
doi: 10.1074/jbc.M116.770552 pmid: 28119451
[20]   Etxeberria U, Fernández-Quintela A, Milagro F I, et al. Impact of polyphenols and polyphenol-rich dietary sources on gut microbiota composition. Journal of Agricultural and Food Chemistry, 2013, 61(40): 9517-9533.
doi: 10.1021/jf402506c pmid: 24033291
[21]   Tsao R. Chemistry and biochemistry of dietary polyphenols. Nutrients, 2010, 2(12): 1231-1246.
doi: 10.3390/nu2121231 pmid: 22254006
[22]   Guo W M, Kong E, Meydani M. Dietary polyphenols, inflammation, and cancer. Nutrition and Cancer, 2009, 61(6): 807-810.
doi: 10.1080/01635580903285098
[23]   Spencer J P E, Abd El Mohsen M M, Minihane A M, et al. Biomarkers of the intake of dietary polyphenols: strengths, limitations and application in nutrition research. The British Journal of Nutrition, 2008, 99(1): 12-22.
doi: 10.1017/S0007114507798938
[24]   Pandey K B, Rizvi S I. Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Medicine and Cellular Longevity, 2009, 2(5): 270-278.
doi: 10.4161/oxim.2.5.9498 pmid: 20716914
[25]   Manach C, Scalbert A, Morand C, et al. Polyphenols: food sources and bioavailability. The American Journal of Clinical Nutrition, 2004, 79(5): 727-747.
doi: 10.1093/ajcn/79.5.727
[26]   Marín L, Miguélez E M, Villar C J, et al. Bioavailability of dietary polyphenols and gut microbiota metabolism: antimicrobial properties. BioMed Research International, 2015, 2015: 905215.
[27]   Chen P, Sun J W, Liang Z Q, et al. The bioavailability of soy isoflavones in vitro and their effects on gut microbiota in the simulator of the human intestinal microbial ecosystem. Food Research International, 2022, 152: 110868.
doi: 10.1016/j.foodres.2021.110868
[28]   Albert Dhayakaran R P, Neethirajan S, Xue J, et al. Characterization of antimicrobial efficacy of soy isoflavones against pathogenic biofilms. LWT - Food Science and Technology, 2015, 63(2): 859-865.
doi: 10.1016/j.lwt.2015.04.053
[29]   Meir A Y, Tuohy K, von Bergen M, et al. The metabolomic-gut-clinical axis of mankai plant-derived dietary polyphenols. Nutrients, 2021, 13(6): 1866.
doi: 10.3390/nu13061866
[30]   Xia J F, Gao J J, Inagaki Y, et al. Flavonoids as potential anti-hepatocellular carcinoma agents: recent approaches using HepG 2 cell line. Drug Discoveries & Therapeutics, 2013, 7(1): 1-8.
[31]   Larrosa M, Yañéz-Gascón M J, Selma M V, et al. Effect of a low dose of dietary resveratrol on colon microbiota, inflammation and tissue damage in a DSS-induced colitis rat model. Journal of Agricultural and Food Chemistry, 2009, 57(6): 2211-2220.
doi: 10.1021/jf803638d pmid: 19228061
[32]   Newman D J, Newman D J. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. Journal of Natural Products, 2020, 83(3): 770-803.
doi: 10.1021/acs.jnatprod.9b01285 pmid: 32162523
[33]   Pan J Y, Chen S L, Yang M H, et al. An update on lignans: natural products and synthesis. Natural Product Reports, 2009, 26(10): 1251-1292.
doi: 10.1039/b910940d
[34]   Woodward K A, Draijer R, Thijssen D H J, et al. Polyphenols and microvascular function in humans: a systematic review. Current Pharmaceutical Design, 2018, 24(2): 203-226.
doi: 10.2174/1381612823666171109103939 pmid: 29119919
[35]   Chen H W, Cheng J X, Liu M T, et al. Inhibitory and combinatorial effect of diphyllin, a v-ATPase blocker, on influenza viruses. Antiviral Research, 2013, 99(3): 371-382.
doi: 10.1016/j.antiviral.2013.06.014
[36]   Truzzi F, Tibaldi C, Zhang Y, et al. An overview on dietary polyphenols and their biopharmaceutical classification system (BCS). International Journal of Molecular Sciences, 2021, 22(11): 5514.
doi: 10.3390/ijms22115514
[37]   Rothwell J A, Perez-Jimenez J, Neveu V, et al. Phenol-Explorer 3.0: a major update of the Phenol-Explorer database to incorporate data on the effects of food processing on polyphenol content. Database (Oxford), 2013, 2013: bat070.
[38]   Wu S B, Xue Y T, Yang S J, et al. Combinational quorum sensing devices for dynamic control in cross-feeding cocultivation. Metabolic Engineering, 2021, 67: 186-197.
doi: 10.1016/j.ymben.2021.07.002 pmid: 34229080
[39]   Levy-Booth D J, Fetherolf M M, Stewart G R, et al. Catabolism of alkylphenols in Rhodococcus via a meta-cleavage pathway associated with genomic islands. Frontiers in Microbiology, 2019, 10: 1862.
doi: 10.3389/fmicb.2019.01862 pmid: 31481940
[40]   Huber B, Eberl L, Feucht W, et al. Influence of polyphenols on bacterial biofilm formation and quorum-sensing. Zeitschrift Fur Naturforschung C, Journal of Biosciences, 2003, 58(11-12): 879-884.
[41]   Lebeaux D, Ghigo J M, Beloin C. Biofilm-related infections: bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics. Microbiology and Molecular Biology Reviews: MMBR, 2014, 78(3): 510-543.
doi: 10.1128/MMBR.00013-14
[42]   Koo H, Allan R N, Howlin R P, et al. Targeting microbial biofilms: current and prospective therapeutic strategies. Nature Reviews Microbiology, 2017, 15(12): 740-755.
doi: 10.1038/nrmicro.2017.99 pmid: 28944770
[43]   Kamiloglu S, Tomas M, Capanoglu E. Dietary flavonols and O-glycosides. Handbook of Dietary Phytochemicals. Singapore: Springer Singapore, 2019: 1-40.
[44]   Mena P, Bresciani L, Brindani N, et al. Phenyl-γ-valerolactones and phenylvaleric acids, the main colonic metabolites of flavan-3-ols: synthesis, analysis, bioavailability, and bioactivity. Natural Product Reports, 2019, 36(5): 714-752.
doi: 10.1039/c8np00062j pmid: 30468210
[45]   Tundis R, Acquaviva R, Bonesi M, et al. Citrus flavanones. Handbook of Dietary Phytochemicals. Singapore: Springer Singapore, 2019: 1-30.
[46]   Barreca D, Gattuso G, Bellocco E, et al. Flavanones: Citrus phytochemical with health-promoting properties. BioFactors, 2017, 43(4): 495-506.
doi: 10.1002/biof.1363 pmid: 28497905
[47]   Testai L, Calderone V. Nutraceutical value of Citrus flavanones and their implications in cardiovascular disease. Nutrients, 2017, 9(5): 502.
doi: 10.3390/nu9050502
[48]   Hostetler G L, Ralston R A, Schwartz S J. Flavones: food sources, bioavailability, metabolism, and bioactivity. Advances in Nutrition, 2017, 8(3): 423-435.
doi: 10.3945/an.116.012948 pmid: 28507008
[49]   Zaheer K, Humayoun Akhtar M. An updated review of dietary isoflavones: nutrition, processing, bioavailability and impacts on human health. Critical Reviews in Food Science and Nutrition, 2017, 57(6): 1280-1293.
doi: 10.1080/10408398.2014.989958 pmid: 26565435
[50]   Khoo H E, Azlan A, Tang S T, et al. Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food & Nutrition Research, 2017, 61(1): 1361779.
[51]   Bento-Silva A, Koistinen V M, Mena P, et al. Factors affecting intake, metabolism and health benefits of phenolic acids: do we understand individual variability. European Journal of Nutrition, 2020, 59(4): 1275-1293.
doi: 10.1007/s00394-019-01987-6 pmid: 31115680
[52]   Heleno S A, Barros L, Martins A, et al. Nutritional value, bioactive compounds, antimicrobial activity and bioaccessibility studies with wild edible mushrooms. LWT - Food Science and Technology, 2015, 63(2): 799-806.
doi: 10.1016/j.lwt.2015.04.028
[53]   El Khawand T, Courtois A, Valls J, et al. A review of dietary stilbenes: sources and bioavailability. Phytochemistry Reviews, 2018, 17(5): 1007-1029.
doi: 10.1007/s11101-018-9578-9
[54]   Xu X Y, Wang D Y, Li Y P, et al. Plant-derived lignans as potential antiviral agents: a systematic review. Phytochemistry Reviews, 2022, 21(1): 239-289.
doi: 10.1007/s11101-021-09758-0
[55]   Lories B, Belpaire T E R, Yssel A, et al. Agaric acid reduces Salmonella biofilm formation by inhibiting flagellar motility. Biofilm, 2020, 2: 100022.
doi: 10.1016/j.bioflm.2020.100022
[56]   Burt S A, van der Zee R, Koets A P, et al. Carvacrol induces heat shock protein 60 and inhibits synthesis of flagellin in Escherichia coli O157: H7. Applied and Environmental Microbiology, 2007, 73(14): 4484-4490.
doi: 10.1128/AEM.00340-07
[57]   Inamuco J, Veenendaal A K J, Burt S A, et al. Sub-lethal levels of carvacrol reduce Salmonella typhimurium motility and invasion of porcine epithelial cells. Veterinary Microbiology, 2012, 157(1-2): 200-207.
doi: 10.1016/j.vetmic.2011.12.021
[58]   Zhang J M, Rui X, Wang L, et al. Polyphenolic extract from Rosa rugosa tea inhibits bacterial quorum sensing and biofilm formation. Food Control, 2014, 42: 125-131.
doi: 10.1016/j.foodcont.2014.02.001
[59]   Flemming H C, Neu T R, Wozniak D J. The EPS matrix: the "house of biofilm cells". Journal of Bacteriology, 2007, 189(22): 7945-7947.
doi: 10.1128/JB.00858-07
[60]   Gilbert K B, Kim T H, Gupta R, et al. Global position analysis of the Pseudomonas aeruginosa quorum-sensing transcription factor LasR. Molecular Microbiology, 2009, 73(6): 1072-1085.
doi: 10.1111/j.1365-2958.2009.06832.x
[61]   Sakuragi Y, Kolter R. Quorum-sensing regulation of the biofilm matrix genes (pel) of Pseudomonas aeruginosa. Journal of Bacteriology, 2007, 189(14): 5383-5386.
pmid: 17496081
[62]   Allesen-Holm M, Barken K B, Yang L, et al. A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. Molecular Microbiology, 2006, 59(4): 1114-1128.
pmid: 16430688
[63]   Trentin D S, Silva D B, Amaral M W, et al. Tannins possessing bacteriostatic effect impair Pseudomonas aeruginosa adhesion and biofilm formation. PLoS One, 2013, 8(6): e66257.
doi: 10.1371/journal.pone.0066257
[64]   Gill S, Kaur A, Kapoor D, et al. Cranberry polyphenols: beneficial effects for prevention of periodontal disease and dental caries. The Saint’s International Dental Journal, 2016, 2(2): 38.
[65]   Sarabhai S, Sharma P, Capalash N. Ellagic acid derivatives from Terminalia chebula Retz. downregulate the expression of quorum sensing genes to attenuate Pseudomonas aeruginosa PAO1 virulence. PLoS One, 2013, 8(1): e53441.
doi: 10.1371/journal.pone.0053441
[66]   de Vita D, Friggeri L, D’Auria F D, et al. Activity of caffeic acid derivatives against Candida albicans biofilm. Bioorganic & Medicinal Chemistry Letters, 2014, 24(6): 1502-1505.
doi: 10.1016/j.bmcl.2014.02.005
[67]   Wei L N, Shi C Z, Luo C X, et al. Phloretin inhibits biofilm formation by affecting quorum sensing under different temperature. LWT, 2020, 131: 109668.
doi: 10.1016/j.lwt.2020.109668
[68]   Adil M, Baig M H, Rupasinghe H P V. Impact of citral and phloretin, alone and in combination, on major virulence traits of Streptococcus pyogenes. Molecules (Basel, Switzerland), 2019, 24(23): 4237.
doi: 10.3390/molecules24234237
[69]   Rudrappa T, Bais H P. Curcumin, a known phenolic from Curcuma longa, attenuates the virulence of Pseudomonas aeruginosa PAO1 in whole plant and animal pathogenicity models. Journal of Agricultural and Food Chemistry, 2008, 56(6): 1955-1962.
doi: 10.1021/jf072591j
[70]   Qin N, Tan X J, Jiao Y M, et al. RNA-Seq-based transcriptome analysis of methicillin-resistant Staphylococcus aureus biofilm inhibition by ursolic acid and resveratrol. Scientific Reports, 2014, 4: 5467.
doi: 10.1038/srep05467
[71]   Lee K, Lee J H, Ryu S Y, et al. Stilbenes reduce Staphylococcus aureus hemolysis, biofilm formation, and virulence. Foodborne Pathogens and Disease, 2014, 11(9): 710-717.
doi: 10.1089/fpd.2014.1758
[72]   Cho H S, Lee J H, Ryu S Y, et al. Inhibition of Pseudomonas aeruginosa and Escherichia coli O157: H 7 biofilm formation by plant metabolite ε-viniferin. Journal of Agricultural and Food Chemistry, 2013, 61(29): 7120-7126.
doi: 10.1021/jf4009313
[73]   Maisuria V B, Los Santos Y L D, Tufenkji N, et al. Cranberry-derived proanthocyanidins impair virulence and inhibit quorum sensing of Pseudomonas aeruginosa. Scientific Reports, 2016, 6: 30169.
doi: 10.1038/srep30169 pmid: 27503003
[74]   Chen T T, Sheng J Y, Fu Y H, et al. 1 H NMR-based global metabolic studies of Pseudomonas aeruginosa upon exposure of the quorum sensing inhibitor resveratrol. Journal of Proteome Research, 2017, 16(2): 824-830.
doi: 10.1021/acs.jproteome.6b00800
[75]   Kim Y G, Lee J H, Gwon G, et al. Essential oils and eugenols inhibit biofilm formation and the virulence of Escherichia coli O157: H7. Scientific Reports, 2016, 6: 36377.
doi: 10.1038/srep36377
[76]   Yadav M K, Chae S W, Im G J, et al. Eugenol: a phyto-compound effective against methicillin-resistant and methicillin-sensitive Staphylococcus aureus clinical strain biofilms. PLoS One, 2015, 10(3): e0119564.
doi: 10.1371/journal.pone.0119564
[77]   Zhou L M, Zheng H D, Tang Y D, et al. Eugenol inhibits quorum sensing at sub-inhibitory concentrations. Biotechnology Letters, 2013, 35(4): 631-637.
doi: 10.1007/s10529-012-1126-x pmid: 23264268
[78]   Khan S T, Khan M, Ahmad J, et al. Thymol and carvacrol induce autolysis, stress, growth inhibition and reduce the biofilm formation by Streptococcus mutans. AMB Express, 2017, 7(1): 49.
doi: 10.1186/s13568-017-0344-y
[79]   Liu F, Jin P P, Sun Z L, et al. Carvacrol oil inhibits biofilm formation and exopolysaccharide production of Enterobacter cloacae. Food Control, 2021, 119: 107473.
doi: 10.1016/j.foodcont.2020.107473
[80]   Borges A, Ferreira C, Saavedra M J, et al. Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria. Microbial Drug Resistance (Larchmont, N Y), 2013, 19(4): 256-265.
[81]   Borges A, Saavedra M J, Simões M. The activity of ferulic and gallic acids in biofilm prevention and control of pathogenic bacteria. Biofouling, 2012, 28(7): 755-767.
doi: 10.1080/08927014.2012.706751 pmid: 22823343
[82]   Thakur S, Ray S, Jhunjhunwala S, et al. Insights into coumarin-mediated inhibition of biofilm formation in Salmonella typhimurium. Biofouling, 2020, 36(4): 479-491.
doi: 10.1080/08927014.2020.1773447
[83]   Zhang Y H, Sass A, van Acker H, et al. Coumarin reduces virulence and biofilm formation in Pseudomonas aeruginosa by affecting quorum sensing, type Ⅲ secretion and C-di-GMP levels. Frontiers in Microbiology, 2018, 9: 1952.
doi: 10.3389/fmicb.2018.01952
[84]   Das T, Das M C, Das A, et al. Modulation of S. aureus and P. aeruginosa biofilm: an in vitro study with new coumarin derivatives. World Journal of Microbiology & Biotechnology, 2018, 34(11): 170.
doi: 10.1007/s11274-018-2545-1
[85]   Gutiérrez-Barranquero J A, Reen F J, McCarthy R R, et al. Deciphering the role of coumarin as a novel quorum sensing inhibitor suppressing virulence phenotypes in bacterial pathogens. Applied Microbiology and Biotechnology, 2015, 99(7): 3303-3316.
doi: 10.1007/s00253-015-6436-1 pmid: 25672848
[86]   Lade H, Paul D, Kweon J H. Combined effects of curcumin and (-)-epigallocatechin gallate on inhibition of N-acylhomoserine lactone-mediated biofilm formation in wastewater bacteria from membrane bioreactor. Journal of Microbiology and Biotechnology, 2015, 25(11): 1908-1919.
doi: 10.4014/jmb.1506.06010 pmid: 26139614
[87]   Stenvang M, Dueholm M S, Vad B S, et al. Epigallocatechin gallate remodels overexpressed functional amyloids in Pseudomonas aeruginosa and increases biofilm susceptibility to antibiotic treatment. Journal of Biological Chemistry, 2016, 291(51): 26540-26553.
pmid: 27784787
[88]   Du W F, Zhou M, Liu Z G, et al. Inhibition effects of low concentrations of epigallocatechin gallate on the biofilm formation and hemolytic activity of Listeria monocytogenes. Food Control, 2018, 85: 119-126.
doi: 10.1016/j.foodcont.2017.09.011
[89]   Zhu J L, Huang X Z, Zhang F, et al. Inhibition of quorum sensing, biofilm, and spoilage potential in Shewanella baltica by green tea polyphenols. Journal of Microbiology (Seoul, Korea), 2015, 53(12): 829-836.
[90]   Packiavathy I A S V, Sasikumar P, Pandian S K, et al. Prevention of quorum-sensing-mediated biofilm development and virulence factors production in Vibrio spp. by curcumin. Applied Microbiology and Biotechnology, 2013, 97(23): 10177-10187.
doi: 10.1007/s00253-013-4704-5 pmid: 23354447
[91]   Packiavathy I A S V, Priya S, Pandian S K, et al. Inhibition of biofilm development of uropathogens by curcumin - an anti-quorum sensing agent from Curcuma longa. Food Chemistry, 2014, 148: 453-460.
doi: 10.1016/j.foodchem.2012.08.002 pmid: 24262582
[92]   Sethupathy S, Prasath K G, Ananthi S, et al. Proteomic analysis reveals modulation of iron homeostasis and oxidative stress response in Pseudomonas aeruginosa PAO1 by curcumin inhibiting quorum sensing regulated virulence factors and biofilm production. Journal of Proteomics, 2016, 145: 112-126.
doi: S1874-3919(16)30141-5 pmid: 27108548
[93]   Hu P, Huang P, Chen M W. Curcumin reduces Streptococcus mutans biofilm formation by inhibiting sortase A activity. Archives of Oral Biology, 2013, 58(10): 1343-1348.
doi: 10.1016/j.archoralbio.2013.05.004
[94]   Sheng J Y, Chen T T, Tan X J, et al. The quorum-sensing inhibiting effects of stilbenoids and their potential structure-activity relationship. Bioorganic & Medicinal Chemistry Letters, 2015, 25(22): 5217-5220.
doi: 10.1016/j.bmcl.2015.09.064
[95]   Truchado P, Tomás-Barberán F A, Larrosa M, et al. Food phytochemicals act as Quorum Sensing inhibitors reducing production and/or degrading autoinducers of Yersinia enterocolitica and Erwinia carotovora. Food Control, 2012, 24(1-2): 78-85.
doi: 10.1016/j.foodcont.2011.09.006
[1] SHAO Ying-zhi,CHE Jian,CHENG Chi,JIANG Zhi-yang,XUE Chuang. Advances in Molecular Biological Methods to Improve Extracellular Electron Transport Efficiency of Electroactive Microorganisms[J]. China Biotechnology, 2021, 41(6): 50-59.
[2] CHANG Lu, HUANG Jiao-fang, DONG Hao, ZHOU Bin-hui, ZHU Xiao-juan, ZHUANG Ying-ping. A Review on Bioremediation and Detection of Heavy Metal Pollution by Synthetic Biological Engineered Microorganisms and Biofilms[J]. China Biotechnology, 2021, 41(1): 62-71.
[3] DUAN Hai-rong,WEI Sai-jin,LI Xun-hang. Advances in Rhamnolipid Biosynthesis by Pseudomonas aeruginosa Research[J]. China Biotechnology, 2020, 40(9): 43-51.
[4] Wen-jing WANG,Li-yu YANG,Chan-juan LIU,Jin ZHAO,Qin LUO. Effect of Glutamate Dehydrogenase Deletion on Biofilm Formation,Virulence and Extracellular Proteins Expression of Listeria monocytogenes[J]. China Biotechnology, 2018, 38(9): 1-11.
[5] SHI Ya-hui, YU Xin-hui, ZHANG Ying, LUO Qin. Effect of the Deletion of RsbU on Biofilm Formation in Listeria Monocytogenes[J]. China Biotechnology, 2015, 35(7): 45-54.
[6] TIAN Bao-yu, MA Rong-qin. Antibiotic Resistances in Environmental Microbiota and Antibiotic Resistome[J]. China Biotechnology, 2015, 35(10): 108-114.
[7] LIU Qiang, XU Qing, LI Shuang. Fumaric Acid Fermentation by Immobilized Rhizopus oryzae with Biofilm Reactor[J]. China Biotechnology, 2014, 34(2): 93-97.
[8] LIU Xia, GUO Qing-long, WANG Ruo-jun, WANG Hong-hai, PEI Xiu-ying, ZHANG Xue-lian. Screening and Identification of Mycobacterium tuberculosis Biofilm Formation Related Genes[J]. China Biotechnology, 2013, 33(4): 15-21.
[9] LI Long-jie, ZHOU Gang, SHI Qing-shan, OUYANG You-sheng, CHEN Yi-ben, HU Wen-feng. Isolation, Identification and Characterization of a Biofilm Formation Strain[J]. China Biotechnology, 2013, 33(11): 38-43.
[10] GAO Zong-liang, GU Yuan-xing, ZHAO Feng, LIU Yong-sheng. Advance in Active Biofilm Dispersal Mechanism[J]. China Biotechnology, 2012, 32(02): 117-122.
[11] WANG Jian-hua, QUAN Chun-shan, ZHAO Peng-chao, FAN Sheng-di. Study on the Inhibition Effect of DKP on the Biofilms Formed by Three Pathogens[J]. China Biotechnology, 2011, 31(8): 61-65.
[12] . Effect of Nutrient and Hydrodynamic Conditions on Growth Characteristics of Photosynthetic Bacterial Biofilm[J]. China Biotechnology, 2009, 29(04): 67-72.