Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2021, Vol. 41 Issue (2/3): 98-106    DOI: 10.13523/j.cb.2011013
    
Research Advances on the Therapy of Rheumatoid Arthritis with the Nanotechnology Based on Transdermal Drug Delivery System
HU Sheng-tao1,ZHANG Er-bing1,LIN Ye1,ZHANG Feng1,HUANG Dan1,SONG Hou-pan1,LIU Bin2,CAI Xiong1,**()
1 Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
2 College of Biology, Hunan University, Changsha 410082, China
Download: HTML   PDF(16696KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Rheumatoid arthritis (RA) is a systemic, chronic autoimmune disease that is considered to be incurable. Less effective concentration of conventional drugs in the affected joints and more frequent adverse effects of even novel biological agents remain to be therapeutic challengs for RA. Advances in nanobiotechnology have facilitated the development of new classes of therapeutics with a focus on new drug delivery systems. Recent studies have shown that nanocarriers can significantly improve bioavailability of existing, traditional disease-modifying antirheumatic drugs (DMARS), and transdermal delivery can remarkably decrease toxic effects and adverse reaction of oral administration and injection of drugs. Here, nanomaterials used in the transdermal drug delivery system for RA therapy and target therapeutic strategies in the basic-research aspect of RA as well as the progress and existing issues of current nano-preparations are summarized so as to provide perspectives for further avenues of development and improved method of novel transdermal nanomaterial-loaded drug delivery systems.



Key wordsRheumatoid arthritis      Nanocarrier      Transdermal drug delivery      Target therapy     
Received: 05 November 2020      Published: 08 April 2021
ZTFLH:  Q819  
Corresponding Authors: Xiong CAI     E-mail: caixiong@hnucm.edu.cn
Cite this article:

HU Sheng-tao,ZHANG Er-bing,LIN Ye,ZHANG Feng,HUANG Dan,SONG Hou-pan,LIU Bin,CAI Xiong. Research Advances on the Therapy of Rheumatoid Arthritis with the Nanotechnology Based on Transdermal Drug Delivery System. China Biotechnology, 2021, 41(2/3): 98-106.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2011013     OR     https://manu60.magtech.com.cn/biotech/Y2021/V41/I2/3/98

Fig.1 Schematic diagram of nanocarrier (a)Nanoparticles (b)Solid lipid nanoparticles (c)Nanoemulsion (d)Liposomes (e)Nanogel
Fig.2 RA diseased joints and internal environment of pannus (a) Schematic diagram of RA diseased joints (b) Pannus environment
Fig.3 ELVIS effect mechanism diagram (a)Normal and (b)Inflammatory synovial tissue internal environment
Fig.4 Adhesion between leukocytes and endothelial cells (a)αvβ3 is highly expressed on endothelial cells (b)Cell-adhesion molecules are involved in the adhesion of leukocytes to endothelial cells Before leukocytes can migrate into surrounding tissue they roll on edothelial cells and subsequently arrest to the cell surface. The initial capture and rolling of leukocytes is mediated by the interaction of selectin molecules present on both leukocytes (L-selectin) and endothelial cells (P-selectin and E-selectin) with carbohydrate ligands on the reciprocal cell-surface membrane. Also, interactions between leukocyte integrins and vascular cell adhesion molecule 1 (VCAM-1) and intracellular adhesion molecules-1(ICAM-1) on the endothelium can mediate rolling of leukocytes. Leukocyte integrin molecules are activated by chemoattractants on the endothelial surface leading to mediate the migration of leukocytes and recruit in inflammatory tissues
[1]   Smolen J S, Aletaha D, Barton A, et al. Rheumatoid arthritis. Nature Reviews Disease Primers, 2018,4(Suppl 10):60-75.
[2]   Li Z G. A new look at rheumatology in China:Opportunities and challenges. Nature Reviews Rheumatology, 2015,11(5):313-317.
pmid: 25599919
[3]   谢文慧, 张卓莉. 类风湿关节炎治疗目标的研究进展. 中华风湿病学杂志, 2019,23(3):195-198.
[3]   Xie W H, Zhang Z L. Research progress on the therapeutic goals of rheumatoid arthritis. Chinese Journal of Rheumatology, 2019,23(3):195-198.
[4]   Burmester G R, Pope J E. Novel treatment strategies in rheumatoid arthritis. The Lancet, 2017,389(10086):2338-2348.
[5]   Oliveira I M, Gon?alves C, Reis R L, et al. Engineering nanoparticles for targeting rheumatoid arthritis: Past, present, and future trends. Nano Research, 2018. 11(9):4489-4506.
[6]   庞晓晨, 成睿珍, 赵静, 等. 中药透皮给药系统研究进展及其新剂型的应用. 中国新药杂志, 2019,28(3):286-291.
[6]   Pang X C, Cheng R Z, Zhao J, et al. Research progress of transdermal drug delivery system of traditional Chinese medicine and the application of new formulations. Chinese Journal of New Drugs, 2019,28(3):286-291.
[7]   Pirmardvand Chegini S, Varshosaz J, Taymouri S. Recent approaches for targeted drug delivery in rheumatoid arthritis diagnosis and treatment. Artificial Cells, Nanomedicine,and Biotechnology, 2018,46(sup2):502-514.
[8]   邢桂英, 邵林军. 纳米载体在中药制剂经皮给药应用中的研究进展. 华西药学杂志, 2020,35(1):101-105.
[8]   Xing G Y, Shao L J. Recent advance of nanocarriers in transdermal drug delivery of traditional Chinese medicine. West China Journal of Pharmaceutical Sciences, 2020,35(1):101-105.
[9]   Wen Y, Lin W, Mettenbrink E M, et al. Nanoparticle toxicology. Annu Rev Pharmacol Toxicol, 2021,61(1):269-289.
[10]   Khan D, Qindeel M, Ahmed N, et al. Development of novel pH-sensitive nanoparticle-based transdermal patch for management of rheumatoid arthritis. Nanomedicine(London, England), 2020,15(6):603-624.
[11]   Gul R, Ahmed N, Ullah N, et al. Biodegradable ingredient-based emulgel loaded with ketoprofen nanoparticles. AAPS Pharm Sci Tech, 2018,19(4):1869-1881.
[12]   El Menshawe S F, Nafady M M, Aboud H M, et al. Transdermal delivery of fluvastatin sodium via tailored spanlastic nanovesicles: mitigated Freund’s adjuvant-induced rheumatoid arthritis in rats through suppressing p38 MAPK signaling pathway. Drug Delivery, 2019,26(1):1140-1154.
[13]   Fernández-García R, Lalatsa A, Statts L, et al. Transferosomes as nanocarriers for drugs across the skin: Quality by design from lab to industrial scale. Int J Pharm, 2020,573:118817.
doi: 10.1016/j.ijpharm.2019.118817 pmid: 31678520
[14]   Marimuthu M, Bennet D, Kim S. Self-assembled nanoparticles of PLGA-conjugated glucosamine as a sustained transdermal drug delivery vehicle. Polymer Journal, 2013,45(2):202-209.
[15]   Zhang Z, Chen Y, Ding J, et al. Biocompatible 5-aminolevulinic acid/Au nanoparticle-loaded ethosomal vesicles for in vitro transdermal synergistic photodynamic/photothermal therapy of hypertrophic scars. Nanoscale Research Letters, 2017,12(1):622.
pmid: 29247361
[16]   Tang Q, Chen C, Jiang Y, et al. Engineering an adhesive based on photosensitive polymer hydrogels and silver nanoparticles for wound healing. Journal of Materials Chemistry B, 2020,8(26):5756-5764.
pmid: 32519734
[17]   Janakiraman K, Krishnaswami V, Rajendran V, et al. Novel Nano therapeutic materials for the effective treatment of rheumatoid arthritis- recent insights. Materials Today Communications, 2018,17:200-213.
doi: 10.1016/j.mtcomm.2018.09.011 pmid: 32289062
[18]   Wen Z, Lin J, Su J Q, et al. Influences of trehalose-modification of solid lipid nanoparticles on drug loading. European Journal of Lipid Science and Technology, 2017,119(9):1600364(1-10).
[19]   Nirbhavane P, Sharma G, Singh B, et al. Preclinical explorative assessment of celecoxib-based biocompatible lipidic nanocarriers for the management of CFA-induced rheumatoid arthritis in Wistar rats. AAPS Pharm SciTech, 2018,19(7):3187-3198.
[20]   Peng L H, Wei W, Shan Y H, et al. Sustained release of piroxicam from solid lipid nanoparticle as an effective anti-inflammatory therapeutics in vivo. Drug Development and Industrial Pharmacy, 2017,43(1):55-66.
pmid: 27498809
[21]   Bhalekar M R, Madgulkar A R, Desale P S, et al. Formulation of piperine solid lipid nanoparticles (SLN) for treatment of rheumatoid arthritis. Drug Development and Industrial Pharmacy, 2017,43(6)1003-1010.
doi: 10.1080/03639045.2017.1291666 pmid: 28161984
[22]   Kaur A, Goindi S, Katare O P. Formulation, characterisation and in vivo evaluation of lipid-based nanocarrier for topical delivery of diflunisal. Journal of Microencapsulation, 2016,33(5):475-486.
[23]   Singh B, Singh R, Bandyopadhyay S, et al. Optimized nanoemulsifying systems with enhanced bioavailability of carvedilol. Colloids and Surfaces B: Biointerfaces, 2013,101:465-474.
pmid: 23010056
[24]   陈雯烨, 王志高, 鞠兴荣, 等. 纳米乳的研究进展与潜在局限性. 粮食科技与经济, 2020,45(3):79-83.
[24]   Chen W Y, Wang Z G, Ju X R, et al. Research progress and potential limitations of nanoemulsions. Grain Science and Technology and Economy, 2020,45(3):79-83.
[25]   Pathan I, Mangle M, Bairagi S. Design and characterization of nanoemulsion for transdermal delivery of meloxicam. Analytical Chemistry Letters, 2016,6(3):286-295.
[26]   Gokhale J P, Mahajan H S, Surana S J. Quercetin loaded nanoemulsion-based gel for rheumatoid arthritis: In vivo and in vitro studies. Biomedicine & Pharmacotherapy, 2019,112:108622.
[27]   Chen Y, Zhu D P, Xiong X P, et al. Magnesium oil enriched transdermal nanogel of methotrexate for improved arthritic joint mobility, repair, and reduced inflammation. Journal of Microencapsulation, 2020,37(1):77-90.
pmid: 31795796
[28]   Shewaiter M A, Hammady T M, El-Gindy A, et al. Formulation and characterization of leflunomide/diclofenac sodium microemulsion base-gel for the transdermal treatment of inflammatory joint diseases. Journal of Drug Delivery Science and Technology, 2021,61:102110.
[29]   Poonia N, Lather V, Kaur B, et al. Optimization and development of methotrexate and resveratrol-loaded nanoemulsion formulation using box-behnken design for rheumatoid arthritis. ASSAY and Drug Development Technologies, 2020,18(8):356-368.
pmid: 33052698
[30]   Khosa A, Reddi S, Saha R N. Nanostructured lipid carriers for site-specific drug delivery. Biomedicine Pharmacother, 2018,103:598-613.
[31]   Gu Y W, Tang X M, Yang M, et al. Transdermal drug delivery of triptolide-loaded nanostructured lipid carriers: Preparation, pharmacokinetic, and evaluation for rheumatoid arthritis. International Journal of Pharmaceutics, 2019,554:235-244.
pmid: 30423415
[32]   Sadarani B, Majumdar A, Paradkar S, et al. Enhanced skin permeation of methotrexate from penetration enhancer containing vesicles: In vitro optimization and in vivo evaluation. Biomedicine & Pharmacotherapy, 2019,114:108770.
pmid: 30913494
[33]   Yurdasiper A, Ertan G, Heard C M. Enhanced delivery of naproxen to the viable epidermis from an activated poly N-isopropylacrylamide (PNIPAM) nanogel: Skin penetration, modulation of COX-2 expression and rat paw oedema. Nanomedicine: Nanotechnology,Biology and Medicine, 2018,14(7):2051-2059.
[34]   Qindeel M, Khan D, Ahmed N, et al. Surfactant-free, self-assembled nanomicelles-based transdermal hydrogel for safe and targeted delivery of methotrexate against rheumatoid arthritis. ACS Nano, 2020,14(4):4662-4681.
doi: 10.1021/acsnano.0c00364 pmid: 32207921
[35]   Filipowicz A, Wo?owiec S. Solubility and in vitro transdermal diffusion of riboflavin assisted by PAMAM dendrimers. International Journal of Pharmaceutics, 2011,408(1-2):152-156.
[36]   谭玉静, 洪枫, 邵志宇. 细菌纤维素在生物医学材料中的应用. 中国生物工程杂志, 2007,27(4):126-131.
[36]   Tan Y J, Hong F, Shao Z Y. The application of bacterial cellulose in biomedical materials. China Biotechnology, 2007,27(4):126-131.
[37]   Maimoona Q, Dildar K, Naveed A, et al. Surfactant free, self-assembled nanomicelles-based transdermal hydrogel for safe and targeted delivery of methotrexate against rheumatoid arthritis. ACS Nano, 2020,14(4):4662-4681.
[38]   夏加璇, 朱颖, 任宏伟, 等. 纳米制剂在类风湿性关节炎靶向治疗中的应用研究. 中国医药工业杂志, 2019,50(7):712-721.
[38]   Xia J X, Zhu Y, Ren H W, et al. Researches on nanomedicines in targeted therapy of rheumatoid arthritis. Chinese Journal of Pharmaceuticals, 2019,50(7):712-721.
[39]   Wang Y L, Liu Z B, Li T, et al. Enhanced therapeutic effect of RGD-modified polymeric micelles loaded with low-dose methotrexate and nimesulide on rheumatoid arthritis. Theranostics, 2019,9(3):708-720.
pmid: 30809303
[40]   Zhang N, Zhang S S, Xu C Y, et al. Decoy oligodeoxynucleotides, polysaccharides, and targeted peptide-functionalized gold nanorods for the combined treatment of rheumatoid arthritis. Advanced Healthcare Materials, 2018,7(23):e1800982.
[41]   Wu Z Q, Xu K N, Min J K, et al. Folate-conjugated hydrophobicity modified glycol chitosan nanoparticles for targeted delivery of methotrexate in rheumatoid arthritis. Journal of Applied Biomaterials & Functional Materials, 2020,18:2280800020962629.
[42]   Yang M D, Ding J X, Feng X R, et al. Scavenger receptor-mediated targeted treatment of collagen-induced arthritis by dextran sulfate-methotrexate prodrug. Theranostics, 2017,7(1):97-105.
[43]   Trujillo-Nolasco R M, Morales-Avila E, Ocampo-García B E, et al. Preparation and in vitro evaluation of radiolabeled HA-PLGA nanoparticles as novel MTX delivery system for local treatment of rheumatoid arthritis. Materials Science and Engineering: C, 2019,103:109766.
[44]   Juarranz Y, Gutiérrez-Ca?as I, Santiago B, et al. Differential expression of vasoactive intestinal peptide and its functional receptors in human osteoarthritic and rheumatoid synovial fibroblasts. Arthritis and Rheumatism, 2008,58(4):1086-1095.
[45]   Koo O M Y, Rubinstein I, Onyüksel H. Actively targeted low-dose camptothecin as a safe, long-acting, disease-modifying nanomedicine for rheumatoid arthritis. Pharmaceutical Research, 2011,28(4):776-787.
doi: 10.1007/s11095-010-0330-4 pmid: 21132352
[1] . [J]. China Biotechnology, 2021, 41(12): 1-3.
[2] WU Han-rong,WANG Ying,HUANG Ying-ming,LI Dong-xue,LI Zhi-fei,FANG Zi-han,FAN Lin. Promote the Innovation and Transformation of Biotechnology by Base Platform[J]. China Biotechnology, 2021, 41(12): 141-147.
[3] YIN Ze-chao,WANG Xiao-fang,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Advances on Genetic Research and Mechanism Analysis on Maize Resistance to Ear Rot[J]. China Biotechnology, 2021, 41(12): 103-115.
[4] LENG Yan,SUN Kang-tai,LIU Qian-qian,PU A-qing,LI Xiang,WAN Xiang-yuan,WEI Xun. Trends of Global Gene-edited Crops Supervision[J]. China Biotechnology, 2021, 41(12): 24-29.
[5] HE Wei,ZHU Lei,LIU Xin-ze,AN Xue-li,WAN Xiang-yuan. Research Progress on Maize Genetic Transformation and Commercial Development of Transgenic Maize[J]. China Biotechnology, 2021, 41(12): 13-23.
[6] YANG Meng-bing,JIANG Yi-lin,ZHU Lei,AN Xue-li,WAN Xiang-yuan. CRISPR/Cas Plant Genome Editing Systems and Their Applications in Maize[J]. China Biotechnology, 2021, 41(12): 4-12.
[7] YIN Fang-bing,WANG Cheng,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Progress on Dissecting Genetic Architecture and Formation Mechanism of Maize Ear Traits[J]. China Biotechnology, 2021, 41(12): 30-46.
[8] QIN Wen-xuan,LIU Xin,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Progress on Genetic Analysis and Molecular Dissection on Maize Leaf Angle Traits[J]. China Biotechnology, 2021, 41(12): 74-87.
[9] WANG Rui-pu,DONG Zhen-ying,GAO Yue-xin,LONG Yan,WAN Xiang-yuan. Research Progress on Genetic Structure and Regulation Mechanism on Starch Content in Maize Kernel[J]. China Biotechnology, 2021, 41(12): 47-60.
[10] MA Ya-jie,GAO Yue-xin,LI Yi-ping,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Progress on Genetic Analysis and Molecular Dissection on Maize Plant Height and Ear Height[J]. China Biotechnology, 2021, 41(12): 61-73.
[11] WANG Yan-bo,WEI Jia,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Research Advances on Genetic Structure and Molecular Mechanism Underlying the Formation of Tassel Traits in Maize[J]. China Biotechnology, 2021, 41(12): 88-102.
[12] MAO Kai-yun,LI Rong,LI Dan-dan,ZHAO Ruo-chun,FAN Yue-lei,JIANG Hong-bo. Analysis of the Current Status of Global Bispecific Antibody Development[J]. China Biotechnology, 2021, 41(11): 110-118.
[13] WU Han-rong,WANG Ying,YANG Li,GE Yao,FAN Ling. Current Situation and Development Suggestions of China’s Biotechnology Base Platform[J]. China Biotechnology, 2021, 41(11): 119-123.
[14] LIU Tian-yi,FENG Hui,SALSABEEL Yousuf,XIE Ling-li,MIAO Xiang-yang. Research Progress of lncRNA in Animal Fat Deposition[J]. China Biotechnology, 2021, 41(11): 82-88.
[15] XUE Zhi-yong,DAI Hong-sheng,ZHANG Xian-yuan,SUN Yan-ying,HUANG Zhi-wei. Effects of Vitreoscilla Hemoglobin Gene on Growth and Intracellular Oxidation State of Saccharomyces cerevisiae[J]. China Biotechnology, 2021, 41(11): 32-39.