Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2020, Vol. 40 Issue (8): 74-83    DOI: 10.13523/j.cb.2004004
    
Advances in Production of Monoclonal Antibody and Antibody Fragments in Engineered Prokaryotes and Yeast
ZHAO Yan-shu,ZHANG Jin-hua,SONG Hao()
Key Laboratory of Systems Bioengineering of Ministry of Education, School of Chemical Engineering amd Technology,Tianjin University, Tianjin 300072, China
Download: HTML   PDF(454KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Monoclonal antibodies and antibody fragments play important roles in the pharmaceutical market. They are mainly produced in mammalian cell systems, which have several limitations such as complex manipulation and high costs. For purpose of using cheap drugs, monoclonal antibodies and antibody fragments have been produced in prokaryotes and yeasts. However, the lack of glycosylation and the low yield of antibodies prevent their development. The progress has been made recently in the prokaryotes and yeasts to enhance the antibodies production via optimization of transcription and translation, co-expressing chaperones and inhibiting proteolytic degradation, etc. This will lay the foundation for the industrialization production of antibodies in prokaryotes and yeasts.



Key wordsMonoclonal antibody      Antibody fragments      Prokaryotes      Yeast      Industrial production     
Received: 02 April 2020      Published: 10 September 2020
ZTFLH:  Q819  
Corresponding Authors: Hao SONG     E-mail: hsong@tju.edu.cn
Cite this article:

ZHAO Yan-shu,ZHANG Jin-hua,SONG Hao. Advances in Production of Monoclonal Antibody and Antibody Fragments in Engineered Prokaryotes and Yeast. China Biotechnology, 2020, 40(8): 74-83.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2004004     OR     https://manu60.magtech.com.cn/biotech/Y2020/V40/I8/74

宿主菌 形式 产量 备注 参考文献
大肠杆菌 scFv 0.9 mg/g 阿拉伯糖诱导剂 [20]
大肠杆菌 scFv >40 mg/L PelB信号肽及优化的工艺条件 [23]
大肠杆菌 scFv 3.1 g/L 细胞质中产生 [23]
大肠杆菌 scFv 325 mg/L 共表达分子伴侣提高溶解度 [16]
大肠杆菌 Fab 529 mg/L 氮供应量及温度对产量的影响 [22]
大肠杆菌 Fab 10 mg/L phoA启动子;STⅡ信号肽 [24]
大肠杆菌 Fab n.d. 不同信号肽对产量的影响 [25]
大肠杆菌 Fab 3.3 g/L 过表达DsbC [27]
大肠杆菌 Fab 7.4 mg/g 无质粒表达系统 [30]
大肠杆菌 Fab' 2.4 g/L 共表达DsbC的Tsp缺陷型菌株 [28]
大肠杆菌 F(ab)2 2.45 g/L 缺乏Prc蛋白酶 [4]
大肠杆菌 Fv/Fab 1 g/L 无细胞蛋白合成系统 [31]
大肠杆菌 IgG(无糖基化) 150 mg/L 大肠杆菌首次生产IgG [32]
大肠杆菌 IgG(无糖基化) 1~4 mg/L 双顺反子表达系统 [33]
大肠杆菌 IgG(无糖基化) 1.3 g/L IgG产量最高 [34]
大肠杆菌 IgG(无糖基化) 65 mg/L SRP分泌系统;共表达DsbC [36]
大肠杆菌 IgG(无糖基化) n.d.[2] 共表达DsbA;增强信号肽疏水性 [35]
大肠杆菌 IgG(无糖基化) >130 mg/L RpoD突变体;共表达分子伴侣 [37]
大肠杆菌 IgG(无糖基化) 150 mg/L 大肠杆菌丙酮酸代谢路径对产量的影响 [38]
大肠杆菌 IgG变体(无糖基化) 40~50 mg/L 首个不糖基化但能结合FcγRs的IgG变体 [40]
大肠杆菌 IgG(糖基化) 50 mg/L 大肠杆菌首个糖基化IgG抗体 [41]
大肠杆菌 IgG(糖基化) n.d.[2] 表达设计的糖基化序列 [42]
 
宿主菌 形式 产量 备注 溶解性 参考文献
枯草芽孢杆菌 scFv 130 mg/L 革兰阳性菌分泌scFv片段的最高水平 可溶 [43]
地衣芽孢杆菌 scFv 12~17 mg/L 可溶 [43]
巨大芽孢杆菌 scFv 14 mg/L 优化的木糖诱导型启动子 可溶 [43]
短芽孢杆菌 Fab 1.25 g/L 革兰阳性菌分泌Fab片段的最高水平 可溶 [45]
谷氨酸棒杆菌 scFv n.d. 首次在谷氨酸棒杆菌中生产抗体片段 可溶 [47]
谷氨酸棒杆菌 scFv 68 mg/L 首次在谷氨酸棒杆菌中采用分批补料培养生产抗体片段 可溶 [15]
谷氨酸棒杆菌 VHH 1.57 g/L Cg1514信号肽 可溶 [48]
谷氨酸棒杆菌 Fab 57.6 mg/L 首次在谷氨酸棒杆菌中生产Fab片段 可溶 [49]
Table 2 Expression of antibody fragments in Bacillus and Corynebacterium glutamicum
宿主菌 形式 产量 备注 溶解性 参考文献
毕赤酵母 scFv >100 mg/L 毕赤酵母首次生产抗体片段 可溶 [62]
毕赤酵母 scFv/IgG n.d. 工程化信号肽MFa1PP 可溶 [66]
毕赤酵母 scFv 8 g/L 共表达BiP和PDI 可溶 [68]
毕赤酵母 scFv 4.88 g/L 0.5%(v/v)甲醇,较低的pH 可溶 [69]
毕赤酵母 Fab 420~458 mg/L 可溶 [63]
毕赤酵母 Fab 20 mg/L 引入设计的链间二硫键 可溶 [59]
毕赤酵母 Fab ≈25 mg/L 碳源对产量的影响 可溶 [70]
毕赤酵母 F(ab)2 2~8 mg/L 共表达BiP,使用Fos和Jun拉链 可溶 [66]
毕赤酵母 Fc 207 mg/L N-糖基化位点突变 可溶 [65]
毕赤酵母 Fc 635 mg/L 分批补料培养条件优化 可溶 [71]
毕赤酵母 IgG(人源化糖基化) >1 g/L 优化pH、温度、DO浓度和甲醇进料率 可溶 [74]
毕赤酵母 IgG(人源化糖基化) 1.4 g/L 控制甲醇进料速度研究表达动力学 可溶 [76]
毕赤酵母 IgG(人源化糖基化) >1.6 g/L 工业规模(1200L)生产商用IgG 可溶 [77]
毕赤酵母 IgG(人源化糖基化) n.d.[1] 去糖基化之后转糖基化 可溶 [78]
毕赤酵母 IgG(糖基化) 3.05 mg/L 鼠IgG1信号肽 可溶 [79]
毕赤酵母 IgG(糖基化) 6.5 mg/L 鼠IgG1信号肽融合至轻链时可获得最大产量 可溶 [80]
酿酒酵母 scFv n.d.[1] 改造内质网提高转运能力 可溶 [83]
酿酒酵母 IgG(糖基化) n.d.[1] 删除OPI1,共表达CPR5 可溶 [81]
酿酒酵母 IgG(糖基化) n.d.[1] 共表达BiP或GRP或FKBP2 可溶 [82]
解脂耶氏酵母 scFv 20 mg/L 自身信号肽,Kex2p型内切酶 可溶 [86]
乳酸克鲁维酵母 scFv 10 mg/L 自身信号肽,Kex2p型内切酶 可溶 [86]
乳酸克鲁维酵母 IgG(糖基化) 140 mg/L 可溶 [87]
Table 3 Expression of full-length antibodies and antibody fragments in yeast
[1]   Liu J K. The history of monoclonal antibody development-progress, remaining challenges and future innovations. Annals of Medicine and Surgery, 2014,3(4):113-116.
doi: 10.1016/j.amsu.2014.09.001 pmid: 25568796
[2]   汪艳艳, 毛晓燕. 重组单克隆抗体药物的工程细胞培养工艺研究. 微生物学免疫学进展, 2019(5):23.
[2]   Wang Y Y, Mao X Y. Research on engineering cell culture technology of recombinant monoclonal antibody drugs. Advances in Microbiology and Immunology, 2019 ( 5):23.
[3]   Ambrogelly A, Gozo S, Katiyar A, et al. Analytical comparability study of recombinant monoclonal antibody therapeutics. MAbs, 2018,10(4):513-538.
doi: 10.1080/19420862.2018.1438797 pmid: 29513619
[4]   Chen C, Snedecor B, Nishihara J C, et al. High-level accumulation of a recombinant antibody fragment in the periplasm of Escherichia coli requires a triple-mutant (degP prc spr) host strain. Biotechnol Bioeng, 2004,85(5):463-474.
doi: 10.1002/bit.20014 pmid: 14760686
[5]   Ristov J, Espie P, Ulrich P, et al. Characterization of the in vitro and in vivo properties of CFZ533, ablocking and non-depleting anti-CD40 monoclonal antibody. American Journal of Transplantation, 2018,18(1).
pmid: 28801953
[6]   Bouattour M, Raymond E, Qin S, et al. Recent developments of c-Met as a therapeutic target in hepatocellular carcinoma. Hepatology, 2018,67(3):1132-1149.
doi: 10.1002/hep.29496 pmid: 28862760
[7]   Singh R P, Kaiser P K. Role of ranibizumab in management of macular degeneration. Indian J Ophthalmol, 2007,55(6):421-425.
doi: 10.4103/0301-4738.36475 pmid: 17951897
[8]   Goel N, Stephens S. Certolizumab pegol. Mabs, 2012,2(2):137-147.
doi: 10.4161/mabs.2.2.11271 pmid: 20190560
[9]   Spiess C, Merchant M, Huang A, et al. Bispecific antibodies with natural architecture produced by co-culture of bacteria expressing two distinct half-antibodies. Nature Biotechnology, 2013,31(8):753-758.
doi: 10.1038/nbt.2621 pmid: 23831709
[10]   Mamat U, Wilke K, Bramhill D, et al. Detoxifying Escherichia coli for endotoxin-free production of recombinant proteins. Microbial Cell Factories, 2015,14(1):57-57.
doi: 10.1186/s12934-015-0241-5
[11]   Lee Y J, Lee D H, Jeong K J. Enhanced production of human full-length immunoglobulin G1 in the periplasm of Escherichia coli. Appl Microbiol Biotechnol, 2014,98(3):1237-1246.
doi: 10.1007/s00253-013-5390-z pmid: 24270917
[12]   Kellner C, Derer S, Valerius T, et al. Boosting ADCC and CDC activity by Fc engineering and evaluation of antibody effector functions. Methods, 2014,65(1):105-113.
doi: 10.1016/j.ymeth.2013.06.036
[13]   Lee Y J, Lee D H, Jeong K J. Enhanced production of human full-length immunoglobulin G1 in the periplasm of Escherichia coli. Applied Microbiology and Biotechnology, 2014,98(3):1237-1246.
doi: 10.1007/s00253-013-5390-z
[14]   Nelson A L, Reichert J M. Development trends for therapeutic antibody fragments. Nature Biotechnology, 2009,27(4):331-337.
doi: 10.1038/nbt0409-331 pmid: 19352366
[15]   Yim S S, An S J, Choi J W, et al. High-level secretory production of recombinant single-chain variable fragment (scFv) in Corynebacterium glutamicum. Applied Microbiology and Biotechnology, 2014,98(1):273-284.
doi: 10.1007/s00253-013-5315-x
[16]   Yousefi M, Farajnia S, Mokhtarzadeh A, et al. Soluble expression of humanized anti-CD20 single chain antibody in Escherichia coli by cytoplasmic chaperones co-expression. Avicenna Journal of Medical Biotechnology, 2017,10(3):141-146.
pmid: 30090206
[17]   Bird R, Hardman K, Jacobson J, et al. Single-chain antigen-binding proteins. Science, 1988,242(4877):423-426.
doi: 10.1126/science.3140379 pmid: 3140379
[18]   Better M, Chang C, Robinson R, et al. Escherichia coli secretion of an active chimeric antibody fragment. Science, 1988,240(4855):1041-1043.
doi: 10.1126/science.3285471 pmid: 3285471
[19]   Goyal M, Chaudhuri T K. GroEL-GroES assisted folding of multiple recombinant proteins simultaneously over-expressed in Escherichia coli. The International Journal of Biochemistry & Cell Biology, 2015,64:277-286.
doi: 10.1016/j.biocel.2015.04.018 pmid: 25957916
[20]   Shadi A M, Sarrafzadeh M-H, Barar J, et al. Cost-effective batch production process of scFv antibody in Escherichia coli. Human Antibodies, 2018: 1-9.
pmid: 10331181
[21]   Kasli I M, Thomas O R T, Overton T W. Use of a design of experiments approach to optimise production of a recombinant antibody fragment in the periplasm of Escherichia coli: selection of signal peptide and optimal growth conditions. AMB Express, 2019,9(1).
doi: 10.1186/s13568-019-0920-4 pmid: 31797067
[22]   Kim S J, Ha G S, Lee G, et al. Enhanced expression of soluble antibody fragments by low-temperature and overdosing with a nitrogen source. Enzyme Microb Technol, 2018,115:9-15.
doi: 10.1016/j.enzmictec.2018.04.002 pmid: 29859607
[23]   Martineau P, Jones P, Winter G. Expression of an antibody fragment at high levels in the bacterial cytoplasm. Journal of Molecular Biology, 1988,280(1):0-127.
[24]   Luo M, Zhao M, Cagliero C, et al. A general platform for efficient extracellular expression and purification of Fab from Escherichia coli. Appl Microbiol Biotechnol, 2019,103(8):3341-3353.
doi: 10.1007/s00253-019-09745-8 pmid: 30887174
[25]   朱继莹, 李运程, 宋春雨, 等. 抗 TNFα 抗体 Fab 片段在大肠杆菌内表达的优化. 生物技术, 2018,28(5):428-433.
[25]   Zhu J Y, Li Y C, Song C Y, et al. Optimization of expression of anti-TNFα antibody Fab fragments in E. coli. Biotechnology, 2018,28(5):428-433.
[26]   Corisdeo S, Wang B. Functional expression and display of an antibody Fab fragment in Escherichia coli: study of vector designs and culture conditions. Protein Expression and Purification, 2004,34(2):0-279.
[27]   Ellis M, Humphreys D P. Bacterial host strain expressing recombinant DSBC: Google Patents, 2017.
[28]   Ellis M, Patel P, Edon M, et al. Development of a high yielding E. coli periplasmic expression system for the production of humanized Fab’ fragments. Biotechnology Progress, 2017,33(1).
doi: 10.1002/btpr.2372 pmid: 27689785
[29]   Striedner G, Pfaffenzeller I, Markus L, et al. Plasmid-free T7-based Escherichia coli expression systems. Biotechnol Bioeng, 2010,105(4):786-794.
doi: 10.1002/bit.22598 pmid: 19891007
[30]   Fink M, Vazulka S, Egger E, et al. Microbioreactor cultivations of fab-producing Escherichia coli reveal genome-integrated systems as suitable for prospective studies on direct Fab expression effects. Biotechnol J, 2019,14(11):e1800637.
doi: 10.1002/biot.201800637 pmid: 31231932
[31]   Matsuda T, Ito T, Takemoto C, et al. Cell-free synthesis of functional antibody fragments to provide a structural basis for antibody-antigen interaction. PLoS One, 2018,13(2).
doi: 10.1371/journal.pone.0193213 pmid: 29489901
[32]   Simmons L C, Reilly D, Klimowski L, et al. Expression of full-length immunoglobulins in Escherichia coli: rapid and efficient production of aglycosylated antibodies. Journal of Immunological Methods, 2002,263(1-2):133-147.
doi: 10.1016/s0022-1759(02)00036-4 pmid: 12009210
[33]   Makino T, Skretas G, Kang T H, et al. Comprehensive engineering of Escherichia coli for enhanced expression of IgG antibodies. Metab Eng, 2011,13(2):241-251.
doi: 10.1016/j.ymben.2010.11.002
[34]   De Boer H A, Comstock L J, Vasser M. The tac promoter: a functional hybrid derived from the trp and lac promoters. Proceedings of the National Academy of Sciences of the United States of America, 1983,80(1):21-25.
[35]   Zhou Y, Liu P, Gan Y, et al. Enhancing full-length antibody production by signal peptide engineering. Microbial Cell Factories, 2016,15(1):47.
doi: 10.1186/s12934-016-0445-3
[36]   Yong J L, Dong H L, Jeong K J. Enhanced production of human full-length immunoglobulin G1 in the periplasm of Escherichia coli. Applied Microbiology and Biotechnology, 2014,98(3):1237-1246.
doi: 10.1007/s00253-013-5390-z
[37]   Mckenna R, Lombana T N, Yamada M, et al. Engineered sigma factors increase full-length antibody expression in Escherichia coli. Metab Eng, 2019,52:315-323.
doi: 10.1016/j.ymben.2018.12.009 pmid: 30610917
[38]   Zhang J, Zhao Y, Cao Y, et al. Synthetic sRNA-based engineering of Escherichia coli for enhanced production of full-length immunoglobulin G. Biotechnology Journal, 2020: 1900363.
[39]   Wacker M, Linton D, Hitchen P G, et al. N-Linked glycosylation in campylobacter jejuni and Its functional transfer into E. coli. Science, 2002,298(5599):1790-1793.
doi: 10.1126/science.298.5599.1790 pmid: 12459590
[40]   Jung S T, Reddy S T, Kang T H, et al. Aglycosylated IgG variants expressed in bacteria that selectively bind FcgammaRI potentiate tumor cell killing by monocyte-dendritic cells. Proc Natl Acad Sci U S A, 2010,107(2):604-609.
doi: 10.1073/pnas.0908590107 pmid: 20080725
[41]   Valderrama-Rincon J D, Fisher A C, Merritt J H, et al. An engineered eukaryotic protein glycosylation pathway in Escherichia coli. Nature Chemical Biology, 2012,8(5):434-436.
doi: 10.1038/NCHEMBIO.921
[42]   Kightlinger W, Lin L, Rosztoczy M, et al. Design of glycosylation sites by rapid synthesis and analysis of glycosyltransferases. Nature Chemical Biology, 2018,14(6):627-635.
doi: 10.1038/s41589-018-0051-2 pmid: 29736039
[43]   Lakowitz A, Krull R, Biedendieck R. Recombinant production of the antibody fragment D1.3 scFv with different Bacillus strains. Microbial Cell Factories, 2017,16(1):14.
doi: 10.1186/s12934-017-0625-9 pmid: 28115011
[44]   David F, Westphal R, Bunk B, et al. Optimization of antibody fragment production in Bacillus megaterium: the role of metal ions on protein secretion. Journal of Biotechnology, 2010,150(1):115-124.
doi: 10.1016/j.jbiotec.2010.07.023 pmid: 20670661
[45]   Mizukami M, Onishi H, Hanagata H, et al. Efficient production of Trastuzumab Fab antibody fragments in Brevibacillus choshinensis expression system. Protein Expression and Purification, 2018,150:109-118.
doi: 10.1016/j.pep.2018.05.013 pmid: 29857036
[46]   Witthoff S, Schmitz K, Niedenführ S, et al. Metabolic engineering of Corynebacterium glutamicum for methanol metabolism. Appl Environ Microbiol, 2015,81(6):2215-2225.
doi: 10.1128/AEM.03110-14 pmid: 25595770
[47]   An S J, Yim S S, Jeong K J. Development of a secretion system for the production of heterologous proteins in Corynebacterium glutamicum using PorB signal peptide. Protein Expression and Purification, 2013,89(2):251-257.
doi: 10.1016/j.pep.2013.04.003
[48]   Yim S S, Choi J W, Lee R J, et al. Development of a new platform for secretory production of recombinant proteins in Corynebacterium glutamicum. Biotechnol Bioeng, 2016,113(1):163-172.
doi: 10.1002/bit.25692 pmid: 26134574
[49]   Matsuda Y, Itaya H, Kitahara Y, et al. Double mutation of cell wall proteins CspB and PBP1a increases secretion of the antibody Fab fragment from Corynebacterium glutamicum. Microbial cell factories, 2014,13(1):56.
doi: 10.1186/1475-2859-13-56 pmid: 24731213
[50]   James M., Cregg, et al. Recent advances in the expression of foreign genes in Pichia pastoris. Nature Biotechnology, 1993.
doi: 10.1038/s41587-020-0643-8 pmid: 32839564
[51]   Macauley-Patrick S, Fazenda M L, Mcneil B, et al. Heterologous protein production using the Pichia pastoris expression system. Yeast, 2005,22(4):249-270.
doi: 10.1002/yea.1208 pmid: 15704221
[52]   Ferrermiralles N, Domingoespin J, Corchero J L, et al. Microbial factories for recombinant pharmaceuticals. Microbial Cell Factories, 2009,8(1):17-17.
doi: 10.1186/1475-2859-8-17
[53]   Borgheresi R A, Palma M S, Ducancel F, et al. Expression and processing of recombinant sarafotoxins precursor in Pichia pastoris. Toxicon, 2001,39(8):0-1218.
[54]   Anonymous. Deal watch: BMS acquires rights for IL-6 inhibitor. Nature Reviews Drug Discovery, 2010,9(1):10.
doi: 10.1038/nrd3094 pmid: 20043020
[55]   Wood C R, Boss M A, Kenten J H, et al. The synthesis and in vivo assembly of functional antibodies in yeast. Nature, 1985.
doi: 10.1038/d41586-020-02537-5 pmid: 32884144
[56]   Takahashi M, Kuroki Y, Ohtsubo K, et al. Core fucose and bisecting GlcNAc, the direct modifiers of the N-glycan core: their functions and target proteins. Carbohydrate Research, 2009,344(12):1387-1390.
doi: 10.1016/j.carres.2009.04.031 pmid: 19508951
[57]   Jiang Y, Li F, Zha D, et al. Purification process development of a recombinant monoclonal antibody expressed in glycoengineered Pichia pastoris. Protein Expression and Purification, 2011,76(1):0-14.
[58]   Damasceno L M, Pla I, Chang H J, et al. An optimized fermentation process for high-level production of a single-chain Fv antibody fragment in Pichia pastoris. Protein Expression and Purification, 2004,37(1):0-26.
[59]   Nakamura H, Oda-Ueda N, Ueda T, et al. A novel engineered interchain disulfide bond in the constant region enhances the thermostability of adalimumab Fab. Biochemical and Biophysical Research Communications, 2018,495(1):7-11.
doi: 10.1016/j.bbrc.2017.10.140 pmid: 29097200
[60]   Gasser B, Prielhofer R, Marx H, et al. Pichia pastoris: protein production host and model organism for biomedical research. Future Microbiology, 2013,8(2):191-208.
doi: 10.2217/FMB.12.133
[61]   Mattanovich D, Graf A, Stadlmann J, et al. Genome, secretome and glucose transport highlight unique features of the protein production host Pichia pastoris. Microbial Cell Factories, 2009,8(1):29.
doi: 10.1186/1475-2859-8-29
[62]   Ridder R, Schmitz R, Legay F, et al. Generation of rabbit monoclonal antibody fragments from a combinatorial phage display library and their production in the yeast Pichia pastoris. Biotechnology, 1995,13(3):255-260.
doi: 10.1038/nbt0395-255 pmid: 9634767
[63]   Ning D, Junjian X, Qing Z, et al. Production of recombinant humanized anti-HBsAg Fab fragment from Pichia pastoris by fermentation. J Biochem Mol Biol, 2005,38(3):294-299.
doi: 10.5483/bmbrep.2005.38.3.294 pmid: 15943904
[64]   Gasser B, Maurer M, Gach J, et al. Engineering of Pichia pastoris for improved production of antibody fragments. Biotechnology and Bioengineering, 2006,94(2):353-361.
doi: 10.1002/bit.20851 pmid: 16570317
[65]   Hou W, Meng X, Wang Y, et al. Characterization and high-yield production of non-N-glycosylated recombinant human BCMA-Fc in Pichia pastoris. Engineering in Life Sciences, 2017,17(2):96-106.
doi: 10.1002/elsc.201600039 pmid: 32624756
[66]   Rakestraw J A, Sazinsky S L, Piatesi A, et al. Directed evolution of a secretory leader for the improved expression of heterologous proteins and full-length antibodies in Saccharomyces cerevisiae. Biotechnology and Bioengineering, 2009,103(6):1192-1201.
doi: 10.1002/bit.22338 pmid: 19459139
[67]   Yagudin T, Klyatchko E, Zatsepin S, et al. Production of humanized F (ab') 2 fragment of rabies blocking antibodies in Pichia pastoris yeast. Applied Biochemistry and Microbiology, 2016,52(4):378-383.
doi: 10.1134/S0003683816040165
[68]   Damasceno L M, Anderson K A, Ritter G, et al. Cooverexpression of chaperones for enhanced secretion of a single-chain antibody fragment in Pichia pastoris. Applied Microbiology and Biotechnology, 2007,74(2):381-389.
doi: 10.1007/s00253-006-0652-7
[69]   Damasceno L M, Pla I, Chang H-J, et al. An optimized fermentation process for high-level production of a single-chain Fv antibody fragment in Pichia pastoris. Protein Expression and Purification, 2004,37(1):18-26.
doi: 10.1016/j.pep.2004.03.019
[70]   Garcia-Ortega X, Ferrer P, Montesinos J L, et al. Fed-batch operational strategies for recombinant Fab production with Pichia pastoris using the constitutive GAP promoter. Biochemical Engineering Journal, 2013,79:172-181.
doi: 10.1016/j.bej.2013.07.013
[71]   Jeong G M, Lee Y J, Kim Y S, et al. High-level production of Fc-fused kringle domain in Pichia pastoris. Journal of Industrial Microbiology & Biotechnology, 2014,41(6):989-996.
doi: 10.1007/s10295-014-1435-2 pmid: 24682857
[72]   Arias C a D, Marques D D a V, Malpiedi L P, et al. Cultivation of Pichia pastoris carrying the scFv anti LDL (-) antibody fragment. Effect of preculture carbon source. Brazilian Journal of Microbiology, 2017,48(3):419-426.
doi: 10.1016/j.bjm.2016.11.009 pmid: 28237678
[73]   Cereghino J L, Cregg J M. Heterologous protein expression in the methylotrophic yeast Pichia pastoris. Fems Microbiology Reviews, 2000,24(1):45-66.
doi: 10.1111/j.1574-6976.2000.tb00532.x pmid: 10640598
[74]   Potgieter T I, Cukan M, Drummond J E, et al. Production of monoclonal antibodies by glycoengineered Pichia pastoris. Journal of Biotechnology, 2009,139(4):318-325.
[75]   Zhang N, Liu L, Dumitru C D, et al. Glycoengineered Pichia produced anti-HER2 is comparable to trastuzumab in preclinical study. MAbs, 2011,3(3):289-298.
doi: 10.4161/mabs.3.3.15532
[76]   Potgieter T I, Kersey S D, Mallem M R, et al. Antibody expression kinetics in glycoengineered Pichia pastoris. Biotechnology and Bioengineering, 2010,106(6):918-927.
doi: 10.1002/bit.22756 pmid: 20506148
[77]   Ye J, Ly J, Watts K, et al. Optimization of a glycoengineered Pichia pastoris cultivation process for commercial antibody production. Biotechnology Progress, 2011,27(6):1744-1750.
doi: 10.1002/btpr.695
[78]   Liu C-P, Tsai T-I, Cheng T, et al. Glycoengineering of antibody (Herceptin) through yeast expression and in vitro enzymatic glycosylation. Proceedings of the National Academy of Sciences, 2018,115(4):720-725.
[79]   Aw R, Mckay P F, Shattock R J, et al. Expressing anti-HIV VRC01 antibody using the murine IgG1 secretion signal in Pichia pastoris. AMB Express, 2017,7(1):70-70.
doi: 10.1186/s13568-017-0372-7 pmid: 28342171
[80]   Aw R, Mckay P F, Shattock R J, et al. A systematic analysis of the expression of the anti-HIV VRC01 antibody in Pichia pastoris through signal peptide optimization. Protein Expression and Purification, 2018,149:43-50.
doi: 10.1016/j.pep.2018.03.013 pmid: 29601964
[81]   De Ruijter J C, Koskela E V, Frey A D. Enhancing antibody folding and secretion by tailoring the Saccharomyces cerevisiae endoplasmic reticulum. Microbial Cell Factories, 2016,15(1):87.
doi: 10.1186/s12934-016-0488-5
[82]   Koskela E V, De Ruijter J C, Frey A D. Following nature’s roadmap: folding factors from plasma cells led to improvements in antibody secretion in S. cerevisiae. Biotechnology Journal, 2017,12(8):1600631.
doi: 10.1002/biot.v12.8
[83]   Besada-Lombana P B, Da Silva N A. Engineering the early secretory pathway for increased protein secretion in Saccharomyces cerevisiae. Metabolic Engineering, 2019,55:142-151.
doi: 10.1016/j.ymben.2019.06.010 pmid: 31220665
[84]   Van Ooyen A J, Dekker P, Huang M, et al. Heterologous protein production in the yeast Kluyveromyces lactis. Fems Yeast Research, 2006,6(3):381-392.
doi: 10.1111/j.1567-1364.2006.00049.x pmid: 16630278
[85]   Nicaud J-M, Madzak C, Van Den Broek P, et al. Protein expression and secretion in the yeast Yarrowia lipolytica. Fems Yeast Research, 2002,2(3):371-379.
doi: 10.1016/S1567-1356(02)00082-X
[86]   Swennen D, Paul M-F, Vernis L, et al. Secretion of active anti-Ras single-chain Fv antibody by the yeasts Yarrowia lipolytica and Kluyveromyces lactis. Microbiology, 2002,148(1):41-50.
doi: 10.1099/00221287-148-1-41
[87]   汪丽娜, 刘波, 巩新, 等. 抗 HER2 人源化单克隆抗体在乳酸克鲁维酵母中的高效表达及其产物分析. 中国生物工程杂志, 2009,29(5):44-49.
[87]   Wang L N, Liu B, Gong X, et al. High expression and product analysis of anti-HER2 humanized monoclonal antibody in Kluyveromyces lactis. China Biotechnology, 2009,29(5):44-49.
[1] BI Bo,ZHANG Yu,ZHAO Hui. Application of Yeast Hybrid System in Study of Off-target Rate of CRISPR/Cas9 Gene Editing System[J]. China Biotechnology, 2021, 41(6): 27-37.
[2] DONG Shu-xin,QIN Lei,LI Chun,LI Jun. Transcription Factor Engineering Harnesses Metabolic Networks to Meet Efficient Production in Cell Factories[J]. China Biotechnology, 2021, 41(4): 55-63.
[3] CHEN Ying,LI Qian. Patent Analysis on the Development Trend of Industrial Application of Special Yeast[J]. China Biotechnology, 2021, 41(4): 91-99.
[4] WANG Meng,SONG Hui-ru,CHENG Yu-jie,WANG Yi,YANG Bo,HU Zheng. Accurate Detection of Streptococcus pneumoniae by Using Ribosomal Protein L7 / L12 as Molecular Marker[J]. China Biotechnology, 2020, 40(4): 34-41.
[5] ZHANG Xiao-mao,GUO Jing-han,HONG Jie-fang,LU Hai-yan,DING Juan-juan,ZOU Shao-lan,FAN Huan. Evaluation of UPR Response in Yeast by Using UPRE-lac Z as a Reporter Gene[J]. China Biotechnology, 2020, 40(10): 1-9.
[6] HU Yan,LI Hui,HE Cheng-wen,ZHU Jing,XIE Zhi-ping. Construction of a Yeast Strain for the Evaluation of Subcellular Fractionation[J]. China Biotechnology, 2020, 40(10): 10-23.
[7] JIANG Yi-fan,JIA Yu,Wang Long,WANG Zhi-ming. The Glycosylation Design and Control of Monoclonal Antibody by Cell Culture[J]. China Biotechnology, 2019, 39(8): 95-103.
[8] JIN Xue,SONG Jing-zhen,XIE Zhi-ping. Searching for the Subcellular Targeting Sequences of Ste2,a GPCR Protein in Saccharomyces cerevisiae[J]. China Biotechnology, 2019, 39(11): 39-53.
[9] LIU Guo-fang,LIU Xiao-zhi,GAO Jian,WANG Zhi-ming. Effects of Host Cell Residual Proteins on the Quality and Their Quality Control of Monoclonal Antibody[J]. China Biotechnology, 2019, 39(10): 105-110.
[10] Yi-ying WANG,Hai-rong CHENG. Cell Surface-Displaying the Lactose Hydrolase on Yarrowia lipolytica: a New Approach to Lactose Hydrolysis[J]. China Biotechnology, 2018, 38(8): 41-49.
[11] Jian-wei REN,Jun LI,Shang-ze LI. Human CT55 Protein Prokaryotic Expression and Its Production of Monoclonal Antibody[J]. China Biotechnology, 2018, 38(11): 1-8.
[12] Kai-yun MAO,Yue-lei FAN,Heng-zhe WANG,Da-ming CHEN. Market Competition Pattern of Global PD-1/PD-L1 Monoclonal Antibody[J]. China Biotechnology, 2018, 38(11): 103-115.
[13] Wei ZHAO,Jing-da LI,Qing-ping LIU. The Development of Downstream Continuous Purification Technology of Recombinant Protein[J]. China Biotechnology, 2018, 38(10): 74-81.
[14] Jing-jing SUN,Wei-wei ZHOU,Lei-ming ZHOU,Qiao-hui ZHAO,Gui-lin LI. Advance in Large-Scale Culture of Hybridoma Cells in Vitro[J]. China Biotechnology, 2018, 38(10): 82-89.
[15] WANG Yun-long, ZHAO Er-xia, LI Yu-lin. Expression, Purification and Identification of Thymidine Kinase 1 Recombinant Protein[J]. China Biotechnology, 2017, 37(9): 15-22.