Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2019, Vol. 39 Issue (8): 95-103    DOI: 10.13523/j.cb.20190813
    
The Glycosylation Design and Control of Monoclonal Antibody by Cell Culture
JIANG Yi-fan1,JIA Yu1,Wang Long2,WANG Zhi-ming1,*()
1 New Drug Research and Development Company Limited, North China Pharmaceutical Corporation, State Key Laboratory of Antibody Drug Development, Shijiazhuang 050015, China
2 Shanghai Duoning Biotechnology Co. Ltd., Shanghai 201619, China
Download: HTML   PDF(1239KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

In monoclonal antibody drug production process, its glycosylation modification may be affected by a variety of process parameters, therefore come into being heterogeneity easily, and Antibody glycosylation is closely related to antibody half-life, immunogenicity, ADCC, CDC, and so on, so glycosylation is an important quality index for monoclonal antibody drugs, It is necessary to pay attention to and regulate the development of biological drugs, especially in the development of biosimilar. This paper strengthens the understanding of stable and consistent glycosylation by discussing the influence of various important control indicators in the culture process, such as pH, DO, osmolarity and temperature, to guide the efficacy and safety of monoclonal antibody drugs.



Key wordsMonoclonal antibody      Glycosylation      Culture process     
Received: 03 January 2019      Published: 18 September 2019
ZTFLH:  Q81  
Corresponding Authors: Zhi-ming WANG     E-mail: wzm3994@163.com
Cite this article:

JIANG Yi-fan,JIA Yu,Wang Long,WANG Zhi-ming. The Glycosylation Design and Control of Monoclonal Antibody by Cell Culture. China Biotechnology, 2019, 39(8): 95-103.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20190813     OR     https://manu60.magtech.com.cn/biotech/Y2019/V39/I8/95

Fig.1 Synthesis of antibody glycans
Fig.2 N-Linked Glycoforms from Industrial mAbs
[1]   Batra J, Rathore A S . Glycosylation of monoclonal antibody products: current status and future prospects. Biotechnol Prog, 2016,32(5):1091-1102.
[2]   Sha S, Cyrus A, Kurt B , et al. N-Glycosylation design and control of therapeutic monoclonal antibodies. Trends in Biotechnology, 2016,34(10):835-846.
[3]   Maureen S, Michael B . Glycosylation in cell culture. Animal Cell Culture, 2015,9:237-258.
[4]   吕若芸, 陈忱, 魏敬双 . 治疗性抗体药物开发中IgG 亚型选择. 中国生物工程杂志, 2016,36(7):104-111.
[4]   Lv R Y, Chen C, Wei J S . Subclasses selection in therapeutic antibody development. China Biotechnology, 2016,36(7):104-111.
[5]   Liu L M . Antibody glycosylation and its impact on the pharmacokinetics and pharmacodynamics of monoclonal antibodies and Fc-fusion proteins. Journal of Pharmaceutical Sciences. 2015,104(6):1866-1884.
[6]   Gupta K S, Shukla P . Glycosylation control technologies for recombinant therapeutic proteins. Applied Microbiology and Biotechnology. 2018,102(24):10457-10468.
[7]   Li M Y, Ebel B, Paris C , et al. Real-time monitoring of antibody glycosylation site occupancy by in situ Raman spectroscopy during bioreactor CHO cell cultures. Biotechnology Progress. 2018,32(2):486-493.
[8]   Karste K, Bleckmann M, Joop van den H . Not limited to E. coli: versatile expression vectors for mammalian protein expression. Methods Mol Biol, 2017,1586:313-324.
[9]   Strohl R W, Strohl M L. Therapeutic antibody engineering. Cambridge: Woodhead Publishing, 2012: 421-437, 459-595.
[10]   Li F, Natarajan V, Shen Y J , et al. Cell culture processes for monoclonal antibody production. mABs, 2010,2:466-477.
[11]   Baba M, Sato M, Kitoh K , et al. The distribution pattern of α2,3- and α2,6-linked sialic acids affects host cell preference in Toxoplasma gondii. Experimental Parasitology, 2015,155:74-81.
[12]   Castilho A. Glyco-engineering methods and protocols. New York: Humana Press, 2015: 1-436.
[13]   Brunner M, Fricke J, Kroll P , et al. Investigation of the interactions of critical scale-up parameters (pH, pO2 and pCO2) on CHO batch performance and critical quality attributes. Bioprocess Biosyst Eng, 2017,40:251-263.
[14]   Jiang R, Chen H, Xu S . pH excursions impact CHO cell culture performance and antibody N-linked glycosylation. Bioprocess and Biosystems Engineering, 2018,41:1731-1741.
[15]   Ivarsson M, Villiger T K, Morbidelli M , et al. Evaluating the impact of cell culture process parameters on monoclonal antibody N-glycosylation. J Biotechnol, 2014; 188:88-96.
[16]   Michael C B, Nimish G D, Nicholas R A-A , et al. Effects of culture conditions on N-glycolylneuraminic acid (Neu5Gc) content of a recombinant fusion protein produced in CHO cells. Biotechnol Bioeng, 2010,105(6):1048-1057.
[17]   Cleo K, Loscani J der V . Computational tools for predicting and controlling the glycosylation of biopharmaceuticals. Current Opinion in Chemical Engineering, 2018,22:89-97.
[18]   Kunkel J P, Jan D C, Jamieson J C , et al. Dissolved oxygen concentration in serum-free continuous culture affects N-linked glycosylation of a monoclonal antibody. J Biotechnol, 1998,62(1):55-71.
[19]   Butler M . Optimisation of the cellular metabolism of glycosylation for recombinant proteins produced by mammalian cell systems. Cytotechnology, 2006,50(1-3):57-76.
doi: 10.1007/s10616-005-4537-x
[20]   Gawlitzek M, Estacio M, Furch T , et al. Identification of cell culture conditions to control N-glycosylation site-occupancy of recombinant glycoproteins expressed in CHO cells. Biotechnol Bioeng, 2009,103(6):1164-1175.
[21]   Restelli V, Wang M D, Huzel N , et al. The effect of dissolved oxygen on the production and the glycosylation profile of recombinant human erythropoietin produced from CHO cells. Biotechnology & Bioengineering, 2010,94(3) : 481-494.
[22]   Kunkel J P, Jan D C, Butler M , et al. Comparisons of the glycosylation of a monoclonal antibody produced under nominally identical cell culture conditions in two different bioreactors. Biotechnol Prog, 2000; 16:462-470.
[23]   Serrato J A, Palomares L A, Meneses-Acosta A , et al. Heterogeneous conditions in dissolved oxygen affect n-glycosylation but not productivity of a monoclonal antibody in hybridoma cultures. Biotechnol Bioeng, 2004,88(2):176-188.
[24]   McKnight N, Meier S, Chary S , et al. Platform validation of dissolved oxygen ranges for cell culture processes. ESACT, 2012,5:421-424.
[25]   Lin J, Takagi M , et al. Metabolic flux change in hybridoma cells under high osmotic pressure. J Biosci Bioeng, 1999; 87(2):255-257.
[26]   Zhu M M, Goyal A , et al. Effects of elevated pCO2 and osmolality on growth of CHO cells and production of antibody-fusion protein b1: a case study. Biotechnol Prog, 2005; 21(1):70-77.
[27]   Pacis E, Yu M, Autsen J , et al. Effects of cell culture conditions on antibody N-linked glycosylation-what affects high mannose 5 glycoform. Biotechnology & Bioengineering, 2011,108(10):2348-2358.
[28]   Konno Y, Kobayashi Y, Takahashi K , et al. Fucose content of monoclonal antibodies can be controlled by culture medium osmolality for high antibody-dependent cellular cytotoxicity. Cytotechnology, 2012,64(3):249-265.
doi: 10.1007/s10616-011-9377-2
[29]   Albert E S, William M M . Hyperosmotic stress and elevated pCO2 alter monoclonal antibody charge distribution and monosaccharide content. Biotechnol. Prog, 2002,18, 346-353.
[30]   Jernej G, Miha K, Uros N , et al. Metabolic network modelling of chinese hamster ovary (CHO) culture bioreactors operated as microbial cell factories. Acta Chim Slov. 2018,65(4):769-786.
[31]   Si N S, Jedrzejewski P M, Lee K , et al. Model-based investigation of intracellular processes determining antibody fc-glycosylation under mild hypothermia. Biotechnology and Bioengineering, 2017,114(7):1570-1582.
[32]   Chen F, Kou T, Fan L , et al. The combined effect of sodium butyrate and low culture temperature on the production, sialylation, and biological activity of an antibody produced in CHO cells. Biotechnol Bioprocess Eng, 2011,16(6):1157-1165.
[33]   Hengarneh Agharnohseni, Maureen Spearrnan, Kaveh Ohadi , et al. A semi-empirical glycosylation model of a camelid monoclonal antibody under hypothermia cell culture conditions. Journal of Industrial Microbiology & Biotechnology, 2017,44(7):1005-1020.
[34]   Hennicke J, Reinhart D, Altmann F , et al. Impact of temperature and pH on recombinant human IgM quality attributes and productivity, New Biotechnology, 2019,50:20-26.
[35]   Si N S, Sellick C, Lee K , et al. How does mild hypothermia affect monoclonal antibody glycosylation. Biotechnology and Bioengineering, 2014,112(6):1-29.
[36]   Si N S, Lee K, Nayyar K , et al. Exploring cellular behavior under transient gene expression and its impact on mAb productivity and Fc-glycosylation. Biotechnology and Bioengineering, 2018,115(2):512-518.
[37]   Fatemeh T, Behrouz V, Shayan M , et al. Designed amino acid feed in improvement of production and quality targets of a therapeutic monoclonal antibody. Plos One, 2015,e0140597.
[38]   蔡洁行, 于颖佳, 陈乘 , 等. 提高抗体表达量和改良糖基化水平的细胞培养方法: 中国, CN 103320388 B. [2015. 10.28]. .
[38]   Cai J X, Yu Y J, Chen C , et al. Cell culture method capable of improving antibody expression levels and improving glycosylation levels: China, CN 103320388 B. [2015. 10.28]. .
[39]   Harnish M N, Natalia I M, Michael J B , et al. Impact of nucleotide sugar metabolism on protein N-glycosylation in Chinese hamster ovary (CHO) cell culture. Current Opinion in Chemical Engineering, 2018,22:167-176.
[40]   O·波普, N·博康, G·德拉内尔 , 等. 重组糖蛋白生产中的细胞生长和糖基化的调节: 中国, CN201580010823.[ 2016-11-16]. .
[40]   Popp O, Beaucamp N, Drabner G , et al. Modulation of cell growth and glycosylation in recombinant glycoprotein production: China, CN201580010823.[2016-11-16]. .
[41]   Ehret J, Zimmermann M, Eichhorn T , et al. Thomas Impact of cell culture media additives on IgG glycosylation produced in CHO cells. Biotechnology and Bioengineering, 2019,116(4):816-830.
[42]   Fan Y Z, Jimenez Del Val I, Müller C , et al. Amino acid and glucose metabolism in fed-batch CHO cell culture affects antibody production and glycosylation. Biotechnology and Bioengineering, 2015,112(3):521-535.
[43]   Kim S M, Chang K H, Oh D J . Effect of environmental parameters on glycosylation of recombinant immunoglobulin g produced from recombinant CHO cells. Biotechnology and Bioprocess Engineering, 2018,23(4):456-464.
[44]   Blondeel J M E, Braasch K, McGill T , et al. Tuning a MAb glycan profile in cell culture: supplementing N-acetylglucosamine to favour G0 glycans without compromising productivity and cell growth. Journal of Biotechnology, 2015,214:105-112.
[45]   Eric J M B, Marc G A . Supplementing glycosylation: A review of applying nucleotide-sugar precursors to growth medium to affect therapeutic recombinant protein glycoform distributions. Biotechnology Advances. 2018,36(5):1505-1523.
[46]   Hills A E, Patel A, Boyd P , et al. Metabolic control of recombinant monoclonal antibody N-glycosylation in GS-NS0 cells. Biotechnology & Bioengineering, 2001,75(2):239-251.
[47]   Thuduppathy G, Madhava R P, Mahajan P , et al. Cell culture process: WIPO, WO 2015140700 A1. [2015-09-24]. .
[48]   Yang W, Huang Y M, McElearney , et al. Control of protein glycosylation by culture medium supplementation and cell culture process parameters. United States, US 9, 944, 968 B2.[ 2018-04-17]. .
[49]   Batra J, Rathore A S . Glycosylation of monoclonal antibody products: Current status and future prospects. Biotechnology Progress, 2016,32(5):1091-1102.
[50]   Tescione L, Ryll T, Gilbert A. Manganese supplementation for control of glycosylation in mammalian cell culture process. United States, US 2018/0155753 A1.[ 2018-06-07]. .
[51]   Crowell C K, Grampp G E, Rogers G N , et al. Amino acid and manganese supplementation modulates the glycosylation state of erythropoietin in a CHO culture system. Biotechnology & Bioengineering, 2010,96(3):538-549.
[52]   Hong Jong Kwang, Cho Sung Min, Yoon Sung Kwan . Substitution of glutamine by glutamate enhances production and galactosylation of recombinant IgG in Chinese hamster ovary cells. Applied Microbiology and Biotechnology, 2010,88(4):869-876.
doi: 10.1007/s00253-010-2790-1
[53]   Gupta S, Kang S. Overexpression of N-glycosylation pathway regulators to modulate glycosylation of recombinant proteins. United States, US 2019/0010532 A1.[ 2019-01-10]. .
[1] LIN Yan-mei,LUO Xiang,LI Rui-jie,QIN Xiu-lin,FENG Jia-xun. Probing the Role of N-glycosylation on the Catalytic Domain in the Activity and Secretion of Fungal Cellobiohydrolase[J]. China Biotechnology, 2021, 41(4): 18-29.
[2] ZHAO Yan-shu,ZHANG Jin-hua,SONG Hao. Advances in Production of Monoclonal Antibody and Antibody Fragments in Engineered Prokaryotes and Yeast[J]. China Biotechnology, 2020, 40(8): 74-83.
[3] WANG Meng,SONG Hui-ru,CHENG Yu-jie,WANG Yi,YANG Bo,HU Zheng. Accurate Detection of Streptococcus pneumoniae by Using Ribosomal Protein L7 / L12 as Molecular Marker[J]. China Biotechnology, 2020, 40(4): 34-41.
[4] CHEN Xin-yi,LIU Hu,DAI Da-zhang,LI Chun. Strategies to Improve Crystallizability of Glycosylated Enzyme[J]. China Biotechnology, 2020, 40(3): 154-162.
[5] LIU Guo-fang,LIU Xiao-zhi,GAO Jian,WANG Zhi-ming. Effects of Host Cell Residual Proteins on the Quality and Their Quality Control of Monoclonal Antibody[J]. China Biotechnology, 2019, 39(10): 105-110.
[6] Yu-lei GUO,Liang TANG,Rui-qiang SUN,You LI,Yi-jun CHEN. High-Throughput Micro Bioreactor Development for Biopharmaceuticals[J]. China Biotechnology, 2018, 38(8): 69-75.
[7] Qing-meng LI,Sheng-tao LI,Ning WANG,Xiao-dong GAO. Expression, Purification and Activity Assay of Yeast α-1,2 Mannosyltransferase Alg11[J]. China Biotechnology, 2018, 38(6): 26-33.
[8] Jian-wei REN,Jun LI,Shang-ze LI. Human CT55 Protein Prokaryotic Expression and Its Production of Monoclonal Antibody[J]. China Biotechnology, 2018, 38(11): 1-8.
[9] Kai-yun MAO,Yue-lei FAN,Heng-zhe WANG,Da-ming CHEN. Market Competition Pattern of Global PD-1/PD-L1 Monoclonal Antibody[J]. China Biotechnology, 2018, 38(11): 103-115.
[10] Jing-jing SUN,Wei-wei ZHOU,Lei-ming ZHOU,Qiao-hui ZHAO,Gui-lin LI. Advance in Large-Scale Culture of Hybridoma Cells in Vitro[J]. China Biotechnology, 2018, 38(10): 82-89.
[11] Xiao-chen LIU,Hu LIU,Liang ZHANG,Chun LI. Enzymatic Glycosylation and Its Function in Metabolic Process of Cells[J]. China Biotechnology, 2018, 38(1): 69-77.
[12] WANG Yun-long, ZHAO Er-xia, LI Yu-lin. Expression, Purification and Identification of Thymidine Kinase 1 Recombinant Protein[J]. China Biotechnology, 2017, 37(9): 15-22.
[13] XU Yun-qiao, LI Ting-ting, WU Cai-e, FAN Gong-jian, LI Tong. Research Progress on the Methods of Deglycosylation of Glycoproteins[J]. China Biotechnology, 2017, 37(5): 97-106.
[14] WU Meng-ling, ZHOU Jia-wang, DU Jun. Development and Application of A Double Monoclonal Antibody Sandwich ELISA for the Assay of Nodal[J]. China Biotechnology, 2017, 37(3): 51-57.
[15] LI Min, WU Ri-wei. The Market Overview of Monoclonal Antibodies in Both Domestic and Abroad[J]. China Biotechnology, 2017, 37(3): 106-114.