Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2019, Vol. 39 Issue (11): 39-53    DOI: 10.13523/j.cb.20191105
    
Searching for the Subcellular Targeting Sequences of Ste2,a GPCR Protein in Saccharomyces cerevisiae
JIN Xue,SONG Jing-zhen,XIE Zhi-ping()
State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology,Shanghai Jiao Tong University, Shanghai 200240, China
Download: HTML   PDF(3064KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Members of the G protein-coupled receptor (GPCR) family play important roles in the sensing of extracellular signals. Ste2 is one of the three GPCR proteins in the budding yeast, Saccharomyces cerevisiae. In the past years, extensive efforts have focused on how the function and expression of Ste2 are affected by various mutations. However, little is known about the mechanisms dictating its proper subcellular localization. To this end, a series of mutants containing deletions or substitutions in the N-terminus, C-terminus, transmembrane domains, intra/extracellular loops are constructed. The subcellular localization of wild-type and mutant Ste2 proteins are observed by fluorescent microscopy, in combination with a set of organelle markers, to determine their localization. Wild-type Ste2 is primarily targeted to the plasma membrane and vacuolar lumen. Deletion of the C-terminus eliminates the vascular signal, targeting the protein to the plasma membrane and endoplasmic reticulum instead. The result is similar when the C-terminus is substituted by the corresponding regions from ORI7 and OR17-40, two mammalian GPCRs. When the N-terminus, first extracellular loop (EL1), the second extracellular loop (EL2) or the third intracellular loop (IL3) is substituted, plasma membrane targeting of Ste2 is substantially attenuated or eliminated. Some of these mutants accumulate on intracellular punctate structures. These results suggest that the N-terminus, EL1, EL2 and IL3 regions contain potential sorting signals regulating the transport of Ste2 to the plasma membrane, and that the C-terminus contains signals for its targeting to the vacuole. The present work provides new insights towards understanding the mechanisms governing GPCR protein subcellular localization.



Key wordsYeast      GPCR      Ste2      Subcellular localization      Sorting signals     
Received: 29 March 2019      Published: 17 December 2019
ZTFLH:  Q816  
Corresponding Authors: Zhi-ping XIE     E-mail: zxie@sjtu.edu.cn
Cite this article:

JIN Xue,SONG Jing-zhen,XIE Zhi-ping. Searching for the Subcellular Targeting Sequences of Ste2,a GPCR Protein in Saccharomyces cerevisiae. China Biotechnology, 2019, 39(11): 39-53.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20191105     OR     https://manu60.magtech.com.cn/biotech/Y2019/V39/I11/39

菌株名称 基因型
BY4741 MATa his31 leu2met15ura3
DJ01 MATa his31 leu2met15ura3trp1△::natMX
YJZ1042 DJ01 ste2△ SH69
YJZ1093 DJ01 ste2△ SH69 trp::TRP1-p1k-Ste2-GFP
YJZ1094 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2N-GFP
YJZ1095 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2C-GFP
YJZ1096 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2N(M1+M2)-GFP
YJZ1097 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2N(M2+M3)-GFP
YJZ1098 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2N(M3+M4)-GFP
YJZ1099 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2N(M4+M5)-GFP
YJZ1100 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2N(M5+M6)-GFP
YJZ1101 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2N(M6+M7)-GFP
YJZ1102 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2N(M1+M2+M3+M4)-GFP
YJZ1103 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2N(M2+M3+M4+M5)-GFP
YJZ1104 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2N(M3+M4+M5+M6)-GFP
YJZ1105 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2N(M4+M5+M6+M7)-GFP
YJZ1106 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2N(M1+M2+M3+M4)-GFP
YJZ1107 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2N(M2+M3+M4+M5+M6+M7)-GFP
YJZ1108 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2N(M3+M4+M5)-GFP
YJZ1230 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(I7N)-GFP
YJZ1231 DJ01 ste2△ SH69 trp::TRP1-p1k-Insert-I7N-Ste2-GFP
YJZ1232 DJ01 ste2△ SH69 trp::TRP1-p1k-I7N-ste2-GFP
YJZ1233 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(I7-IL1)-GFP
YJZ1234 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(I7-IL2)-GFP
YJZ1235 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(I7-IL3)-GFP
YJZ1236 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(I7-EL1)-GFP
YJZ1237 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(I7-EL2)-GFP
YJZ1238 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(I7-EL3)-GFP
YJZ1239 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(I7C)-GFP
YJZ1240 DJ01 ste2△ trp::TRP1-p1k-Ste2-GFP
菌株名称 基因型
YJZ1241 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(OR17N)-GFP
YJZ1242 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(OR17-IL1)-GFP
YJZ1243 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(OR17-IL2)-GFP
YJZ1244 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(OR17-IL3)-GFP
YJZ1245 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(OR17-EL1)-GFP
YJZ1246 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(OR17-EL2)-GFP
YJZ1247 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(OR17-EL3)-GFP
YJZ1248 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(OR17N,17C)-GFP
YJZ1257 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(I7N,I7C)-GFP
YJZ1258 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(I7-EL1,I7C)-GFP
YJZ1259 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(I7-EL2,I7C)-GFP
YJZ1260 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(I7-EL3,I7C)-GFP
YJZ1261 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(I7-IL1,I7C)-GFP
YJZ1262 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(I7-IL2,I7C)-GFP
YJZ1263 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(I7-IL3,I7C)-GFP
YJZ1264 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(OR17N,I7C)-GFP
YJZ1265 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(OR17-EL1,I7C)-GFP
YJZ1266 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(OR17-EL2,I7C)-GFP
YJZ1267 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(OR17-EL3,I7C)-GFP
YJZ1268 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(OR17-IL1,I7C)-GFP
YJZ1269 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(OR17-IL2,I7C)-GFP
YJZ1270 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(OR17-IL3,I7C)-GFP
YJZ1271 DJ01 ste2△ SH69 trp::TRP1-p1k-Ste2-GFP ura::URA3-Snf7-mCherry
YJZ1272 DJ01 ste2△ SH69 trp::TRP1-p1k-Ste2-GFP ura::URA3-Vph1-mCherry
YJZ1273 DJ01 ste2△ SH69 trp::TRP1-p1k-Ste2-GFP ura::URA3-Chs5-mCherry
YJZ1274 DJ01 ste2△ SH69 trp::TRP1-p1k-Ste2-GFP ura::URA3-Anp1-mCherry
YJZ1275 DJ01 ste2△ SH69 trp::TRP1-p1k-Ste2-GFP ura::URA3-mCherry-HDEL
YJZ1276 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(I7-EL3,I7C)-GFP ura::URA3-Vph1-mCherry
YJZ1277 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(I7-EL3,I7C)-GFP ura::URA3-Chs5-mCherry
YJZ1278 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(I7-EL3,I7C)-GFP ura::URA3-Snf7-mCherry
YJZ1279 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(I7-EL3,I7C)-GFP ura::URA3-Anp1-mCherry
YJZ1280 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(I7-EL3,I7C)-GFP ura::URA3-mCherry-HDEL
YJZ1281 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(I7-EL1,I7C)-GFP ura::URA3-Snf7-mCherry
YJZ1282 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(I7-EL1,I7C)-GFP ura::URA3-Chs5-mCherry
YJZ1283 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(I7-EL1,I7C)-GFP ura::URA3-Anp1-mCherry
YJZ1284 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(I7-EL1,I7C)-GFP ura::URA3-mCherry-HDEL
YJZ1285 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(I7-EL2,I7C)-GFP ura::URA3-Snf7-mCherry
YJZ1286 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(I7-EL2,I7C)-GFP ura::URA3-Chs5-mCherry
YJZ1287 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(I7-EL2,I7C)-GFP ura::URA3-Anp1-mCherry
菌株名称 基因型
YJZ1288 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(I7-EL2,I7C)-GFP ura::URA3-mCherry-HDEL
YJZ1289 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(OR17-EL2,I7C)-GFP ura::URA3-Snf7-mCherry
YJZ1290 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(OR17-EL2,I7C)-GFP ura::URA3-Chs5-mCherry
YJZ1291 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(OR17-EL2,I7C)-GFP ura::URA3-Anp1-mCherry
YJZ1292 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(OR17-EL2,I7C)-GFP ura::URA3-mCherry-HDEL
YJZ1293 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(OR17-IL3,I7C)-GFP ura::URA3-mCherry-HDEL
YJZ1294 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(I7N,I7C)-GFP ura::URA3-mCherry-HDEL
YJZ1295 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(I7N,I7C)-GFP ura::URA3-Snf7-mCherry
YJZ1296 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(I7N,I7C)-GFP ura::URA3-Vph1-mCherry
YJZ1297 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(I7N,I7C)-GFP ura::URA3-Chs5-mCherry
YJZ1298 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(I7N,I7C)-GFP ura::URA3-Anp1-mCherry
YJZ1299 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(I7-IL2,I7C)-GFP ura::URA3-mCherry-HDEL
YJZ1300 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(I7-IL1,I7C)-GFP ura::URA3-mCherry-HDEL
YJZ1301 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(OR17N,17C)-GFP ura::URA3-mCherry-HDEL
YJZ1302 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(I7-IL3,I7C)-GFP ura::URA3-mCherry-HDEL
YJZ1303 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(OR17-EL3,I7C)-GFP ura::URA3-mCherry-HDEL
YJZ1304 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(OR17-EL1,I7C)-GFP ura::URA3-mCherry-HDEL
YJZ1305 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(OR17-IL2,I7C)-GFP ura::URA3-mCherry-HDEL
YJZ1306 DJ01 ste2△ SH69 trp::TRP1-p1k-ste2(OR17-IL1,I7C)-GFP ura::URA3-mCherry-HDEL
Table 1 Strains used in this study
Fig.1 The subcellular localization of Ste2 in yeast Yeast cells were grown to mid-log phase in YPD, and then collected for fluorescent microscopy
Fig.2 The structure of Ste2 Ste2 contains N and C-termini, 7 transmembrane domains, 3 intracellular loops and 3 extracellular loops. M1 represents the first transmembrane domain, IL1 represents the first intracellular loop, and EL1 represents the first extracellular loop
删除部分 对应删除的氨基酸
ΔN Δ2~47
ΔC Δ301~431
ΔM( 1+2 ) Δ49~103
ΔM( 2+3 ) Δ80~153
ΔM( 3+4 ) Δ130~189
ΔM( 4+5 ) Δ166~230
ΔM( 5+6 ) Δ207~269
ΔM( 6+7 ) Δ246~299
Table 2 List of domain deletion mutants
I7替换 OR17替换
I7N-ste2 (I7N替换Ste2N) OR17N-ste2
ste2(I7-EL1) ste2(OR17-EL1)
ste2(I7-EL2) ste2(OR17-EL2)
ste2(I7-EL3) ste2(OR17-EL3)
ste2(I7-IL1) ste2(OR17-IL1)
ste2(I7-IL2) ste2(OR17-IL2)
ste2(I7-IL3) ste2(OR17-IL3)
ste2(I7C) ste2(OR17C)
Table 3 List of single domain substitution mutants
Fig. 3 Subcellular localization of Ste2 terminal and transmembrane domain deletion mutants Yeast cells were grown to mid-log phase in YPD, and then collected for fluorescent microscopy
I7替换 OR17替换
I7N-ste2(I7C) OR17N-ste2(OR17C)
ste2(I7-EL1, I7C) ste2(OR17-EL1, OR17C)
ste2(I7-EL2, I7C) ste2(OR17-EL2, OR17C)
ste2(I7-EL3, I7C) ste2(OR17-EL3, OR17C)
ste2(I7-IL1, I7C) ste2(OR17-IL1, OR17C)
ste2(I7-IL2, I7C) ste2(OR17-IL2, OR17C)
ste2(I7-IL3, I7C) ste2(OR17-IL3, OR17C)
Table 4 List of loop and C-terminal double substitution mutants
Fig.4 Subcellular localization of Ste2 domain substitution mutants Images were captured and presented as in Fig. 3
Fig. 5 Effect of additional domain substitution in combination with C-terminal substitution on the subcellular localization of Ste2 Images were captured and presented as in Fig. 3
Fig.6 Co-localization results of I7 and OR17 double substitution mutants Yeast cells were grown to mid-log phase in YPD, and then collected for fluorescent microscope (a) Ste2 colocalization analysis using Snf7, Vph1, Chs5, Anp1 and HDEL as organelle markers (b)-(f) Localization of I7N-ste2(I7C) (b), ste2(I7-EL1, I7C) (c), ste2(I7-EL2, I7C) (d), ste2(I7-EL3, I7C) (e), and ste2(OR17-EL2, OR17C) (f) were compared with that of several red organelle markers (g)The localization of OR17N-ste2(OR17C), ste2(OR17-EL1, OR17C), ste2(OR17-EL3, OR17C), ste2(OR17-IL1, OR17C), ste2(OR17-IL2, OR17C), ste2(OR17-IL3, OR17C) were compared with that of a red ER marker
质粒 质膜 晚期内体 晚高尔基体 早高尔基体 液泡 内质网
Ste2-GFP 有质膜信号 6.38% 不共定位 不共定位 共定位 不共定位
I7N-ste2(I7C) 质膜信号极弱 13.92% 无共定位信号 1.35% 28.13% 共定位
ste2(I7-EL1, I7C) 质膜信号弱 28.13% 无共定位信号 无共定位信号 共定位 共定位
ste2(I7-EL2, I7C) 无质膜信号 无共定位信号 无共定位信号 无共定位信号 共定位 共定位,且ER
上有点状信号
ste2(I7-EL3, I7C) 无质膜信号 无共定位信号 无共定位信号 无共定位信号 无共定位信号 共定位
ste2(I7-IL1, I7C) 有质膜信号 无共定位信号 无共定位信号 无共定位信号 无共定位信号 共定位
ste2(I7-IL2, I7C) 有质膜信号 无共定位信号 无共定位信号 无共定位信号 无共定位信号 共定位
ste2(I7-IL3, I7C) 无质膜信号 无共定位信号 无共定位信号 无共定位信号 7.17% 共定位
Table 5 Co-localization results of I7 double substitution mutants
Ste2-GFP 质膜 内质网
OR17N-ste2(OR17C) 无质膜信号 共定位
ste2(OR17-EL1, OR17C) 无质膜信号 共定位
ste2(OR17-EL2, OR17C) 无质膜信号 共定位,且ER上有点状信号
ste2(OR17-EL3, OR17C) 有质膜信号 有共定位
ste2(OR17-IL1, OR17C) 有质膜信号 有共定位
ste2(OR17-IL2, OR17C) 有质膜信号 有共定位
ste2(OR17-IL3, OR17C) 无质膜信号 共定位
Table 6 Co-localization results of OR17 double substitution mutants
[1]   Fukutani Y, Ishii J, Kondo A , et al. Split luciferase complementation assay for the analysis of G protein‐coupled receptor ligand response in Saccharomyces cerevisiae. Biotechnology & Bioengineering, 2017,114(6):1354.
doi: 10.4014/jmb.1910.10055 pmid: 31838832
[2]   Kristiansen K . Molecular mechanisms of ligand binding, signaling, and regulation within the superfamily of G-protein-coupled receptors: molecular modeling and mutagenesis approaches to receptor structure and function. Pharmacol Ther, 2004,103(1):21-80.
doi: 10.1016/j.pharmthera.2004.05.002 pmid: 15251227
[3]   Stoneman M R, Paprocki J D, Biener G , et al. Quaternary structure of the yeast pheromone receptor Ste2 in living cells.Biochimica et Biophysica Acta (BBA) - Biomembranes, 2016,1859(9):1456-1464.
doi: 10.1016/j.bbamem.2016.12.008 pmid: 27993568
[4]   Cevhero?lu O, Kumas G, Hauser M , et al. The yeast Ste2p G protein-coupled receptor dimerizes on the cell plasma membrane.Biochimica et Biophysica Acta (BBA) - Biomembranes, 2017,1859(5):698-711.
doi: 10.1016/j.bbamem.2017.01.008 pmid: 28073700
[5]   Naider F, Becker J M . The α-factor mating pheromone of Saccharomyces cerevisiae: a model for studying the interaction of peptide hormones and G protein-coupled receptors. Peptides, 2004,25(9):1441-1463.
doi: 10.1016/j.peptides.2003.11.028
[6]   Bardwell L . A walk-through of the yeast mating pheromone response pathway. Peptides, 2004,25(9):1465-1476.
doi: 10.1016/j.peptides.2003.10.022
[7]   Alvaro C G, Thorner J . Heterotrimeric G protein-coupled receptor signaling in yeast mating pheromone response. Journal of Biological Chemistry, 2016,291(15):7788-7795.
doi: 10.1074/jbc.R116.714980 pmid: 26907689
[8]   Choudhary P, Loewen M C . Quantification of mutation-derived bias for alternate mating functionalities of the Saccharomyces cerevisiae Ste2p pheromone receptor. Journal of Biochemistry, 2016,159(1):49-58.
doi: 10.1093/jb/mvv072 pmid: 26232403
[9]   Uddin M S, Naider F, Becker J M . Dynamic roles for the N-terminus of the yeast G protein-coupled receptor Ste2p. Biochimica et Biophysica Acta (BBA) - Biomembranes, 2017,1859(10):2058-2067.
doi: 10.1016/j.bbamem.2017.07.014 pmid: 28754538
[10]   Harley C A, Tipper D J . The Role of charged residues in determining transmembrane protein insertion orientation in yeast. Journal of Biological Chemistry, 1996,271(40):24625-24633.
doi: 10.1074/jbc.271.40.24625 pmid: 8798728
[11]   Fukuda N, Kaishima M, Ishii J , et al. Positive detection of GPCR antagonists using a system for inverted expression of a fluorescent reporter gene. ACS Synthetic Biology, 2017,6(8):1554-1562.
doi: 10.1021/acssynbio.7b00056 pmid: 28499341
[12]   Zecchin A, Stapor P C, Goveia J , et al. Metabolic pathway compartmentalization: an underappreciated opportunity. Curr Opin Biotechnol, 2015,34(34C):73-81.
doi: 10.1016/j.copbio.2014.11.022 pmid: 25499800
[13]   Casad V, Corts A, Mallol J , et al. GPCR homomers and heteromers: A better choice as targets for drug development than GPCR monomers. Pharmacology & Therapeutics, 2009,124(2):248-257.
doi: 10.1007/s12035-019-01849-6 pmid: 31838720
[14]   Rivero-Muller A, Chou Y Y, Ji I , et al. Rescue of defective G protein-coupled receptor function in vivo by intermolecular cooperation. Proceedings of the National Academy of Sciences, 2010,107(5):2319-2324.
[15]   Uddin M S, Kim H, Deyo A , et al. Identification of residues involved in homodimer formation located within aβ-strand region of the N-terminus of a yeast G protein-coupled receptor. Journal of Receptor & Signal Transduction Research, 2012,32(2):65.
doi: 10.4014/jmb.1910.10055 pmid: 31838832
[16]   Radhika V, Proikascezanne T, Jayaraman M , et al. Chemical sensing of DNT by engineered olfactory yeast strain. Nature Chemical Biology, 2007,3(6):325.
doi: 10.1038/nchembio882 pmid: 17486045
[17]   Fukutani Y, Nakamura T, Yorozu M , et al. The N-terminal replacement of an olfactory receptor for the development of a yeast-based biomimetic odor sensor. Biotechnology and Bioengineering, 2012,109(1):205-212.
doi: 10.1002/bit.23327
[18]   Minic J, Persuy M A, Godel E , et al. Functional expression of olfactory receptors in yeast and development of a bioassay for odorant screening. FEBS Journal, 2005,272(2):524-537.
doi: 10.1111/j.1742-4658.2004.04494.x pmid: 15654890
[19]   Seraj Uddin M, Hauser M, Naider F , et al. The N-terminus of the yeast G protein-coupled receptor Ste2p plays critical roles in surface expression, signaling, and negative regulation. Biochimica et Biophysica Acta (BBA) - Biomembranes, 2016,1858(4):715-724.
doi: 10.1016/j.bbamem.2015.12.017 pmid: 26707753
[20]   Kim K M, Lee Y H, Akal-Strader A , et al. Multiple regulatory roles of the carboxy terminus of Ste2p a yeast GPCR. Pharmacological Research, 2011,65(1):31-40.
doi: 10.1016/j.phrs.2011.11.002 pmid: 22100461
[21]   Zuber J, Danial S A, Connelly S M , et al. Identification of destabilizing and stabilizing mutations of Ste2p, a G protein-coupled receptor in Saccharomyces cerevisiae. Biochemistry, 2015,54(9):1787-1806.
doi: 10.1021/bi501314t pmid: 25647246
[22]   Gastaldi S, Zamboni M, Bolasco G , et al. Analysis of random PCR-originated mutants of the yeast Ste2 and Ste3 receptors. Microbiologyopen, 2016,5(4):670-686.
doi: 10.1002/mbo3.361 pmid: 27150158
[23]   Sridharan R, Connelly S M, Naider F , et al. Variable dependence of signaling output on agonist occupancy of Ste2p, a G protein coupled receptor in yeast. Journal of Biological Chemistry, 2016,29(46):24261-24279.
doi: 10.1074/jbc.M116.733006 pmid: 27646004
[1] FENG Zhao,LI Jiang-hao,WANG Jia-hua. Functional Analysis of RpRPL22, a Ribosomal Protein Homologous Gene, in the Symbiotic Nodulation Process of Robinia Pseudoacacia[J]. China Biotechnology, 2021, 41(7): 10-21.
[2] BI Bo,ZHANG Yu,ZHAO Hui. Application of Yeast Hybrid System in Study of Off-target Rate of CRISPR/Cas9 Gene Editing System[J]. China Biotechnology, 2021, 41(6): 27-37.
[3] DONG Shu-xin,QIN Lei,LI Chun,LI Jun. Transcription Factor Engineering Harnesses Metabolic Networks to Meet Efficient Production in Cell Factories[J]. China Biotechnology, 2021, 41(4): 55-63.
[4] CHEN Ying,LI Qian. Patent Analysis on the Development Trend of Industrial Application of Special Yeast[J]. China Biotechnology, 2021, 41(4): 91-99.
[5] ZHAO Yan-shu,ZHANG Jin-hua,SONG Hao. Advances in Production of Monoclonal Antibody and Antibody Fragments in Engineered Prokaryotes and Yeast[J]. China Biotechnology, 2020, 40(8): 74-83.
[6] ZHANG Xiao-mao,GUO Jing-han,HONG Jie-fang,LU Hai-yan,DING Juan-juan,ZOU Shao-lan,FAN Huan. Evaluation of UPR Response in Yeast by Using UPRE-lac Z as a Reporter Gene[J]. China Biotechnology, 2020, 40(10): 1-9.
[7] HU Yan,LI Hui,HE Cheng-wen,ZHU Jing,XIE Zhi-ping. Construction of a Yeast Strain for the Evaluation of Subcellular Fractionation[J]. China Biotechnology, 2020, 40(10): 10-23.
[8] ZHANG Zheng-tan,ZHU Jing,XIE Zhi-ping. A Subcellular Localization Survey for All SNARE Proteins in Saccharomyces cerevisiae[J]. China Biotechnology, 2019, 39(10): 44-57.
[9] Yi-ying WANG,Hai-rong CHENG. Cell Surface-Displaying the Lactose Hydrolase on Yarrowia lipolytica: a New Approach to Lactose Hydrolysis[J]. China Biotechnology, 2018, 38(8): 41-49.
[10] ZHAN Chun-jun, LI Xiang, LIU Guo-qiang, LIU Xiu-xia, YANG Yan-kun, BAI Zhong-hu. Identification of Glycerol Transporter in Pichia pastoris and Function Research[J]. China Biotechnology, 2017, 37(7): 48-55.
[11] WANG Dan-dan, CHEN Tian, XU Liang-guo. Screening of VISA Interacting Proteins by Yeast Two-hybrid System[J]. China Biotechnology, 2017, 37(6): 63-69.
[12] WEI Xuan, HAO Ya-qiao, Susanna Leong Su Jan, WU Yan, LIU Ye-fei, ZHAO Hong-xin. Selective Uptake and Increased Accumulation of Free Saturated Fatty Acids by the Yeast Saccharomyces cerevisiae and Yarrowia lipolytica[J]. China Biotechnology, 2017, 37(2): 63-73.
[13] HU Li-qiang, ZHENG Wen, ZHONG Yi, DU Dan, YANG Hao, GONG Meng. Comparison of Expression and Activity of Antiviral Protein RC28 in Escherichia coli and Pichia pastoris[J]. China Biotechnology, 2017, 37(1): 14-20.
[14] GUO Xue-jiao, ZHA Jian, YAO Kun, WANG Xin, LI Bing-zhi, YUAN Ying-jin. Accelerated Ethanol Production by a Tolerant Saccharomyces cerevisiae to Inhibitor Mixture of Furfural, Acetic Acid and Phenol[J]. China Biotechnology, 2016, 36(5): 97-105.
[15] WAN Yong-qing, YANG Yang, ZHANG Chun-lin, WAN Dong-li, YANG Ai-qin, YANG Qi, WANG Rui-gang, LI Guo-jing. Cloning and Expression Analysis of CiDHN1 Gene in Caragana intermedia[J]. China Biotechnology, 2016, 36(4): 88-96.