Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2019, Vol. 39 Issue (10): 105-110    DOI: 10.13523/j.cb.20191013
    
Effects of Host Cell Residual Proteins on the Quality and Their Quality Control of Monoclonal Antibody
LIU Guo-fang,LIU Xiao-zhi,GAO Jian,WANG Zhi-ming()
State Key Laboratory of Antibody Research & Development,New Drug Research and Development Company Ltd,North China Pharmaceutical Corporation,Shijiazhuang 050015,China
Download: HTML   PDF(430KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The sales of biologic drugs represented by monoclonal antibodies (mAbs) are expanding and showing a rising trend. The use of mAbs provides a new strategy for disease treatment.With the increase in the use of mAbs,higher requirements are placed on the quality of the product.As the level of mAbs expressed by the host cells continues to increase,the content of host cell proteins (HCP) also increases,and the upstream and downstream production processes are constantly faced challenge.The protein contained in HCP is extremely complicated.Although some HCP may be degraded, residual HCP may cause adverse reactions in the clinical use of the drug, thereby affecting the safety and effectiveness of the drug.Enzyme-linked immune sorbent assays (ELISAs) are important methods for HCP detection. ELISAs can quantitatively measure total HCP levels in drugs, but there are limitations.HCP testing of various analytical methods,including LC-MS/MS,is under development,which will provide more evidence for drug process development and validation.The advances in quality control and assays for HCP production in the production of mAbs hosted by the CHO (Chinese hamster ovary) cell line were discussed.



Key wordsMonoclonal antibody drug      Host cell protein      Quality control      Detection method     
Received: 29 January 2019      Published: 12 November 2019
ZTFLH:  Q819  
Corresponding Authors: Zhi-ming WANG     E-mail: wzm3994@163.com
Cite this article:

LIU Guo-fang,LIU Xiao-zhi,GAO Jian,WANG Zhi-ming. Effects of Host Cell Residual Proteins on the Quality and Their Quality Control of Monoclonal Antibody. China Biotechnology, 2019, 39(10): 105-110.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20191013     OR     https://manu60.magtech.com.cn/biotech/Y2019/V39/I10/105

分类 基因 宿主残留蛋白质 分布区域
蛋白酶等 CTSB/D 组织蛋白酶B / D(激活天冬氨酰蛋白酶) 分泌,细胞质
MMP19 基质金属蛋白酶-19(降解多种蛋白质) 分泌,细胞质
HTRA1 丝氨酸蛋白酶HTRA1(剪切N端氨基酸) 分泌
PDIA6 蛋白二硫异构酶A6(参与二硫键的形成) 内质网腔
引起免疫反应的宿主蛋白 S100A6 Protein S100-A6 细胞膜/细胞核膜
RPL30 60S核糖体蛋白L30 细胞质
ANXA5 膜联蛋白A5 细胞质
CXCL3 C-X-C基序趋化因子3 分泌
PLBL2 磷脂酶 溶酶体
Table 1 Host residual proteins in mabs products
名称 功能
PDI9(蛋白质二硫化物酶) 减少二硫键的形成
BiP(78kDa葡萄糖调节蛋白) 促进折叠和组装蛋白质
DnaK(热休克蛋白)
促进蛋白质疏水区域同蛋白质上未折叠区域结合
Table 2 HCP involved in protein aggregation
工艺流程 降低HCP采用的策略
上游工艺 细胞系工程 敲除HCP相关基因
细胞库的建立
培养基组分 组分的筛选和优化
小规模培养工艺 温度、pH、溶解氧等培养条件的优化
放大培养(>100L) 批培养工艺、连续工艺的优化
下游工艺 细胞的收集 去除细胞及细胞碎片
Protein A纯化 进一步提高产物纯度
病毒灭活 灭活可能存在的病毒
其他去除HCP的环节 去除了HCP等工艺相关杂质
病毒过滤 去除可能存在的病毒
Table 3 Strategies for reducing HCP in the production process
应用项目 方法 优势 局限性
染色法 双向电泳 同时进行多点检测 仅观察到丰度值高的蛋白质
提高蛋白质定量检测的准确性 产品对检测造成掩盖干扰
费时费力
双向电泳-Western blot(荧光染色) 覆盖范围大
可以用于总HCP和抗HCP抗体的检测
荧光染色的灵敏度高
HCP的总量检测 ELISA HCP检测的金标准 不能得到特定HCP的信息
可以进行定量检测 覆盖范围受到HCP抗体覆盖范围的影响
桥连ELISA测定 灵敏度高于ELISA 不能得到特定HCP的信息
检测背景低
HCP的鉴定 LC-MS(蛋白质组学方法学) 特异性检测 需要专业的数据采集分析
可以进行定量检测 数据质量依赖于使用的数据库质量
灵敏度非常高
质量检测的准确度高
有限的CHO细胞生物信息数据将制约HCP的数据分析
Table 4 Comparison of HCP identification and detection methods
[1]   Hanania N A, Noonan M, Corren J , et al. Lebrikizumab in moderate-to-severe asthma:pooled data from two randomised placebo-controlled studies. Thorax, 2015,70(8):748-756.
[2]   Wullner D, Zhou L, Bramhall E , et al. Considerations for optimization and validation of an in vitro PBMC derived T cell assay for immunogenicity prediction of biotherapeutics. Clinical Immunology, 2010,137(1):5-14.
[3]   Joubert M K, Deshpande M, Yang J , et al. Use of in vitro assays to assess immunogenicity risk of antibody-based biotherapeutics. PLoS One, 2016,11(8):e0159328.
[4]   Bailey-Kellogg C, Gutierrez A H, Moise L , et al. CHOPPI:a web tool for the analysis of immunogenicity risk from host cell proteins in CHO-based protein production. Biotechnology and Bioengineering, 2014,111(11):2170-2182.
doi: 10.1002/bit.25286
[5]   Eon-Duval A, Valax P, Solacroup T , et al. Application of the quality by design approach to the drug substance manufacturing process of an Fc fusion protein:towards a global multi-step design space. Journal of Pharmaceutical Sciences, 2012,101(10):3604-3618.
doi: 10.1002/jps.23273
[6]   Bracewell D G, Francis R, Smales C M . The future of host cell protein (HCP) identification during process development and manufacturing linked to a risk-based management for their control. Biotechnology and Bioengineering, 2015,112(9):1727-1737.
[7]   Zhang Y B, Howitt J, Mccorkle S , et al. Protein aggregation during overexpression limited by peptide extensions with large net negative charge. Protein Expression and Purification, 2004,36(2):207-216.
doi: 10.1016/j.pep.2004.04.020
[8]   Kim J Y, Kim Y G, Baik J Y , et al. A proteomic approach for identifying cellular proteins interacting with erythropoietin in recombinant Chinese hamster ovary cells. Biotechnology Progress, 2010,26(1):246-251.
[9]   Bee J S, Tie L, Johnson D , et al. Trace levels of the CHO host cell protease cathepsin D caused particle formation in a monoclonal antibody product. Biotechnology Progress, 2015,31(5):1360-1369.
[10]   Lauer T M, Agrawal N J, Chennamsetty N , et al. Developability index: a rapid in silico tool for the screening of antibody aggregation propensity. Journal of Pharmaceutical Sciences, 2012,101(1):102-115.
doi: 10.1002/jps.22758
[11]   Chiu J, Valente K N, Levy N E , et al. Knockout of a difficult-to-remove CHO host cell protein, lipoprotein lipase, for improved polysorbate stability in monoclonal antibody formulations. Biotechnology and Bioengineering, 2017,114(5):1006-1015.
[12]   Valente K N, Lenhoff A M, Lee K H . Expression of difficult-to-remove host cell protein impurities during extended Chinese hamster ovary cell culture and their impact on continuous bioprocessing. Biotechnology and Bioengineering, 2015,112(6):1232-1242.
[13]   Hogwood C E, Tait A S, Koloteva-Levine N , et al. The dynamics of the CHO host cell protein profile during clarification and protein A capture in a platform antibody purification process. Biotechnology and Bioengineering, 2013,110(1):240-251.
doi: 10.1002/bit.24607
[14]   Tait A S ,Hogwood C E M,Smales C M,et al. Host cell protein dynamics in the supernatant of a mAb producing CHO cell line. Biotechnology and Bioengineering, 2012,109(4):971-982.
doi: 10.1002/bit.24383
[15]   Goey C H ,Tsang J M H,Bell D, et al. Cascading effect in bioprocessing-the impact of mild hypothermia on CHO cell behavior and host cell protein composition. Biotechnology and Bioengineering, 2017,114(12):2771-2781.
[16]   Goey C H, Bell D, Kontoravdi C . Mild hypothermic culture conditions affect residual host cell protein composition post-protein A chromatography. mAbs, 2018,10(3):476-487.
[17]   Pezzini J, Joucla G, Gantier R , et al. Antibody capture by mixed-mode chromatography:a comprehensive study from determination of optimal purification conditions to identification of contaminating host cell proteins. Journal of Chromatography A, 2011,1218(45):8197-8208.
doi: 10.1016/j.chroma.2011.09.036
[18]   Nogal B, Chhiba K, Emery J C . Select host cell proteins coelute with monoclonal antibodies in protein A chromatography. Biotechnology Progress, 2012,28(2):454-458.
doi: 10.1002/btpr.1514
[19]   Tarrant R D ,Velez-Suberbie M L,Tait A S, et al.Host cell protein adsorption characteristics during protein A chromatography. Biotechnology Progress, 2012,28(4):1037-1044.
doi: 10.1002/btpr.1581
[20]   Zhang Q, Goetze A M, Cui H , et al. Characterization of the co-elution of host cell proteins with monoclonal antibodies during protein A purification. Biotechnology Progress, 2016,32(3):708-717.
[21]   Bee J S, Machiesky L M, Peng L , et al. Identification of an IgG CDR sequence contributing to co-purification of the host cell protease cathepsin D. Biotechnology Progress, 2017,33(1):140-145.
[22]   Gagnon P, Nian R, Lee J , et al. Nonspecific interactions of chromatin with immunoglobulin G and protein A, and their impact on purification performance. Journal of Chromatography A, 2014,1340(2):68-78.
[23]   Gagnon P, Nian R, Yang Y , et al. Non-immunospecific association of immunoglobulin G with chromatin during elution from protein A inflates host contamination, aggregate content,and antibody loss. Journal of Chromatography A, 2015,1408(21):51-60.
[24]   Nian R, Gagnon P . Advance chromatin extraction enhances performance and productivity of cation exchange chromatography-based capture of Immunoglobulin G monoclonal antibodies. Journal of Chromatography A, 2016,1453:54-61.
[25]   Nian R, Zhang W, Tan L , et al. Advance chromatin extraction improves capture performance of protein A affinity chromatography. Journal of Chromatography A, 2016,1431(29):1-7.
[26]   Jin M, Szapiel N, Zhang J , et al. Profiling of host cell proteins by two-dimensional difference gel electrophoresis (2D-DIGE): Implications for downstream process development. Biotechnology and Bioengineering, 2010,105(2):306-316.
[27]   Farrell A, Mittermayr S, Morrissey B , et al. Quantitative host cell protein analysis using two dimensional data independent LC-MS(E). Analytical Chemistry, 2015,87(18):9186-9193.
[28]   Kreimer S, Gao Y, Ray S , et al. Host cell protein profiling by targeted and untargeted analysis of data independent acquisition mass spectrometry data with parallel reaction monitoring verification. Analytical Chemistry, 2017,89(10):5294-5302.
[29]   Chiverton L M, Evans C, Pandhal J , et al. Quantitative definition and monitoring of the host cell protein proteome using iTRAQ - a study of an industrial mAb producing CHO-S cell line. Biotechnology Journal, 2016,11(8):1014-1024.
[1] LI Shuai-peng,REN He,AN Zhan-fei,YANG Yan-kun,BAI Zhong-hu. The Development of Chemiluminescence Immunoassay Detection Method for Thrombomodulin[J]. China Biotechnology, 2021, 41(4): 30-36.
[2] Sai-bao LIU,Ya-fang LI,Hui WANG,Wei WANG,Duo-liang RAN,Hong-yan CHEN,Qing-wen MENG. Construction of Influenza Virus High-producing Cell Line MDCK-Tpl2 -/- with CRISPR / Cas9[J]. China Biotechnology, 2019, 39(1): 46-54.
[3] REN Hua-jing, LIU Xiao-zhi, WANG Zhi-ming, GAO Jian. Progression of Central Nervous System Disease Therapeutic Antibody Drug Application[J]. China Biotechnology, 2016, 36(9): 54-58.
[4] WANG Dian-liang. The Standards and Quality Control of Cell Drug[J]. China Biotechnology, 2016, 36(10): 115-121.
[5] LI Xing, YAO Wen-bing, XU Chen. Quality Control for PEGylated Recombinant Protein[J]. China Biotechnology, 2015, 35(12): 109-114.
[6] WANG Lan, XIA Mao, GAO Kai. The Development and Quality Control of Antibody-Drug Conjugates[J]. China Biotechnology, 2014, 34(4): 85-94.
[7] YAO Xue, LIU Qi-qi, ZHAO Qing, CHEN Su-hong. Detection of Individualized Treatment and Test of Helicobacter pylori Infection through Visualized Gene Chip Technology[J]. China Biotechnology, 2013, 33(4): 92-100.
[8] FU Lu-1, HUANG Hui-2, CHEN Shu-Yang-1, CHU Bei-1, LIU Jing-1. Mass-scale purification and quality control of a single-chain chimeric Anti-ErbB2 antibody[J]. China Biotechnology, 2009, 29(07): 68-73.
[9] . High Expression, Purification, Quality Control of rhEPO-Fc Fusion Protein[J]. China Biotechnology, 2007, 27(6): 6-9.