Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2020, Vol. 40 Issue (10): 1-9    DOI: 10.13523/j.cb.2006036
    
Evaluation of UPR Response in Yeast by Using UPRE-lac Z as a Reporter Gene
ZHANG Xiao-mao1,GUO Jing-han1,HONG Jie-fang2,LU Hai-yan1,DING Juan-juan1,ZOU Shao-lan1,***(),FAN Huan3,***()
1 School of Chemical Engineering and Technology, Tianjin University, Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin 300072, China
2 Tianjin R&D Center for Petrochemical Technology, Tianjin University, Tianjin 300072, China
3 Tianjin Animal Science and Veterinary Research Institute, Tianjin 300381, China
Download: HTML   PDF(5845KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: Unfolded Protein Response (UPR) is one of the most important protein quality control mechanisms, the information about UPR with help to optimize heterologous protein synthesis by secretory pathway and cell self protection from inhibitory substances such as acid and ethanol.Methods: The indicating strains, W303- 1A (leu 2::UPRE-lac Z) and An-a (leu 2::UPRE-lac Z), abbreviated as WZ and AZ, respectively, were first constructed by CRISPR/Cas9 technology and using UPRE-lac Z as a reporter.Results: The growth curve test showed that there was no significant difference between two strains and their host ones. The β-galactosidase activity was assayed at 4 h of incubation time after adding four reagents into media as followings, 1 μg/ml tunicamycin, 8%(v/v) ethanol, 0.3%(v/v) acetic acid, 5% (v/v) ethanol + 0.1%(v/v)acetic acid, respectively. The values of strain AZ were 8.2, 26.4, 1.1 and 7.9 times of that of blank control, respectively, while the results of strain WZ were 12.6, 2.4, 1.0 and 1.0 times, respectively. Further β-glucosidase was expressed by YEplac195 vector into strain AZ and WZ cell. The assay results after 24 h cultivation in 2% cellobiose media showed that the β-glucosidase activities were 0.35 and 6.12 U/ml, respectively, and the responding LacZ values were 3.1 and 5.4 times of that of blank control, respectively.Conclusions: There exists significant difference on the UPR response spectrum between two strains, which also implies their divergent direction and strategy of genetic modification. This study lays the foundation of analytical methods for investigating the key limiting factors in cell inhibitor tolerance and heterologous protein expression in order to make better use of yeast ER and UPR pathway engineering.



Key wordsYeast      UPRE-lacZ      UPR response      Inhibitor tolerance      Secretory expression     
Received: 22 June 2020      Published: 10 November 2020
ZTFLH:  Q291  
Corresponding Authors: Shao-lan ZOU,Huan FAN     E-mail: slzhou@tju.edu.cn;fanhuan1971@163.com
Cite this article:

ZHANG Xiao-mao,GUO Jing-han,HONG Jie-fang,LU Hai-yan,DING Juan-juan,ZOU Shao-lan,FAN Huan. Evaluation of UPR Response in Yeast by Using UPRE-lac Z as a Reporter Gene. China Biotechnology, 2020, 40(10): 1-9.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2006036     OR     https://manu60.magtech.com.cn/biotech/Y2020/V40/I10/1

Strains or plasmids Characteristics Sources
Escherichia coli
DH5α F-recA1 endA1 hsdR17 [rK-mK-] supE44 λ-thi-1 gyrA96 relA1 Our lab
yeast strains
W303-1A MATa or MATɑ leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15 Our lab
WC W303-1A (leu 2∷UPRE-mCherry) Our lab
An-a MATa ura 3,筛选自工业菌株 Our lab
W303-1A(YCplac33-Cas9) 质粒YCplac33-Cas 9转化得到 This study
WZ W303-1A (leu 2∷ UPRE-lac Z) This study
An-a(YCplac33-Cas9) 质粒YCplac33-Cas9转化得到 This study
AZ An-a (leu 2∷UPRE-lac Z) This study
WZ(YEplac195) 质粒YEplac195即ATCC87589转化得到 This study
WZ(BG) 质粒BG转化得到 This study
AZ(YEplac195) 质粒YEplac195即ATCC87589转化得到 This study
AZ(BG) 质粒BG转化得到 This study
plasmids
pRS42H-gRNA Ampr, hph NT1, crRNA Our lab
YCplac33-Cas9 Ampr, URA 3, Cas 9, 5 603 bp Our lab
BG YEplac195- Ptpi-xyn2s-Aa BGL1-TadhI, β- glucosidase expressing vector Our lab [19]
pRS42H-gLEU2 Ampr, hph NT1, crRNA, 20 bp guide for LEU 2 gene This study
Table 1 All the strains and plasmids used in this study
Primers Sequences (5'→3') Purpose Size
P1 TATTTACTTTGGTAAGAGAAGTTTTAGAGCTAGAAA
TAGC
扩增gRNA序列 (20 bp),构建pRS-gRNA-LEU2用 6 528bp
P2 TTCTCTTACCAAAGTAAATAGATCATTTATCTTTCAC
TGC
P3 CACAATTTGCTAAAGGTACT 扩增donor DNA中左同源臂(H1+UPRE)片段,命名为PCR1 364bp
P4 TCATGGTCATTATTAATTTAGTGTGTGT
P5 TAAATTAATAATGACCATGATTACGGATTC 扩增LacZ ORF片段,片段命名为PCR3 3 095bp
P6 CGCCGGTCCGTTATTTTTGACACCAGACC
P7 TCAAAAATAACGGACCGGCGCGCCACTT 扩增 donor DNA中右同源臂(TadhI+ H2) 片段,命名为PCR2 302bp
P8 CTTGTGATTCTTTGCACTTC
P9 TGACCAAGTTCGTAAATCTA 鉴定引物对 795bp(control strain)
P10 CCATCTCCACAATAGGCATA 4 327bp(indicator strain)
Table 2 All the primers used in this study
Fig.1 Agarose gel electrophoresis of PCR products and donor DNA fragments (a)PCR for pRS42H-gLEU2 construction, 6 528bp (b) Lane 1, PCR1, 364bp; lane 2, PCR2, 302bp (c) Lane 1, PCR3, 3 095bp; lane 2, PCR13, 3 439bp; lane 3, PCR123, 3 721bp; M, 1kb DNA Ladder (d)Structural map for donor DNA segment containing UPRE-lacZ cassette
Fig.2 Chromogenic plate (left: W303-1A host; right: An-a host)
Fig.3 Agarose gel electrophoresis of PCR products (left: W303-1A host; right: An-a host)
Fig.4 The growth curve of four strains
Fig.5 OD600 value and β-galactosidase activity at 4 h of growth time in different media under limited oxygen condition
Fig.6 Enzymatic activities of the strains WZ and AZ at 24 h growth time in YPC media
[1]   Jouhten P, Boruta T, Andrejev S, et al. Yeast metabolic chassis designs for diverse biotechnological products. Scientific Reports, 2016,6:29694.
doi: 10.1038/srep29694 pmid: 27430744
[2]   Majidian P, Tabatabaei M, Zeinolabedini M, et al. Metabolic engineering of microorganisms for biofuel production. Renewable & Sustainable Energy Reviews, 2018,82:3863-3885.
[3]   Young C L, Robinson A S. Protein folding and secretion: mechanistic insights advancing recombinant protein production in S.cerevisiae. Curr Opin Biotechnol, 2014,30:168-177.
doi: 10.1016/j.copbio.2014.06.018 pmid: 25032908
[4]   Fidan O, Zhan J. Recent advances in engineering yeast for pharmaceutical protein production. Rsc Adv, 2015,5:86665-86674.
[5]   Baghban R, Farajnia S, Rajabibazl M, et al. Yeast expression systems: overview and recent advances. Molecular Biotechnology, 2019,61:365-384.
doi: 10.1007/s12033-019-00164-8 pmid: 30805909
[6]   Davison S A, Haan R, Zyl W H. Exploiting strain diversity and rational engineering strategies to enhance recombinant cellulase secretion by Saccharomyces cerevisiae, Applied Microbiology and Biotechnology, 2020, doi: 10.1007/s00253-020-10602-2.
doi: 10.1007/s00253-020-10602-2 pmid: 33097965
[7]   R.E.达尔贝, G.范海列主编, 万平, 张彦琼译. 蛋白质定向、转运和转位. 北京: 科学出版社, 2009.
[7]   R.E. Dallbey, Editor-in-chief; translated by Wan P, Zhang Y Q. Protein targeting, transport and translocation. Beijing Science Press, 2009.
[8]   Feizi A, Österlund T, Petranovic D, et al. Genome-scale modeling of the protein secretory machinery in yeast. PLoS One. 2013,8(5):e63284.
doi: 10.1371/journal.pone.0063284 pmid: 23667601
[9]   赵运英, 王頔, 袁凡, 等. 酿酒酵母细胞中内质网应激与未折叠蛋白反应的研究进展. 微生物学杂志, 2017,37(2):98-106.
[9]   Zhao Y Y, Wang Y, Yuan F, et al. Advances in endoplasmic reticulum stress and unfolded protein response in Saccharomyces cereviscerae. Microbiology, 2017,37(2):98-106.
[10]   刘宝琴, 王华芹. 内质网应激与未折叠蛋白反应的研究进展. 中华肿瘤防治杂志, 2010,17(11):869-872.
[10]   Liu B Q, Wang H Q. Endoplasmic reticulum and unfolded protein response. Chin J Cancer Prev Treat, 2010,17(11):869-872.
[11]   Schröder M. Engineering eukaryotic protein factories. Biotechnol Lett, 2008,30(2):187-196.
doi: 10.1007/s10529-007-9524-1 pmid: 17885737
[12]   Sheng J Y, Flick H, Feng X Y. Systematic optimization of protein secretory pathways in Saccharomyces cerevisiae to increase expression of hepatitis B small antigen. Frontiers in Microbiology, 2017,8, doi: 10.3389/fmicb.2017.00875.
doi: 10.3389/fmicb.2017.00875 pmid: 29387048
[13]   Tang H T, Song M H, He Y, et al. Engineering vesicle trafficking improves the extracellular activity and surface display efficiency of cellulases in Saccharomyces cerevisiae, Biotechnology for Biofuels, 2017,10:53, doi: 10.1186/s13068-017-0738-8.
doi: 10.1186/s13068-017-0738-8 pmid: 28261326
[14]   Haan R, Rensburg E, Rose S H, et al. Progress and challenges in the engineering of non-cellulolytic microorganisms for consolidated bioprocessing. Curr Opin Biotechnol, 2015,33:32-38.
doi: 10.1016/j.copbio.2014.10.003 pmid: 25445545
[15]   De Klerk C, Fosso-Kankeu E, Du Plessis L, et al. Assessment of the viability of Saccharomyces cerevisiae in response to synergetic inhibition during bioethanol production. Current Science, 2018,115(6):1124-1132.
[16]   Davison, Steffi A, Den H, et al. Heterologous expression of cellulase genes in natural Saccharomyces cerevisiae strains. Applied Microbiology and Biotechnology, 2016,100(18):8241-8254.
doi: 10.1007/s00253-016-7735-x pmid: 27470141
[17]   Kawazoe N, Kimata Y, Izawa S. Acetic acid causes endoplasmic reticulum stress and induces the unfolded protein response in Saccharomyces cerevisiae. Frontiers in Microbiology, 2017,8:1192. doi: 10.3389/fmicb.2017.01192.
doi: 10.3389/fmicb.2017.01192 pmid: 28702017
[18]   Navarro-Tapia E, Querol A, Pérez-Torrado R. Membrane fluidification by ethanol stress activates unfolded protein response in yeasts. Microbial Biotechnology, 2018,11(3):465-475.
doi: 10.1111/1751-7915.13032 pmid: 29469174
[19]   Wang G Q, Liu C, Hong J F, et al. Comparison of process configurations for ethanol production from acid- and alkali-pretreated corncob by Saccharomyces cerevisiae strains with and without beta-glucosidase expression. Bioresource Technology, 2013,142:154-161.
doi: 10.1016/j.biortech.2013.05.033 pmid: 23735797
[20]   陆海燕, 李佳蔓, 孙思凡, 等. CRISPR-Cas9系统介导的工业酵母营养缺陷型菌株构建. 中国生物工程杂志, 2019,39(10):67-74.
[20]   Lu H Y, Li J M, Sun S F, et al. Construction of an auxotrophic mutant from an industrial Saccharomyces cerevisiae strain by CRISPR/Cas 9 system. China Biotechnology, 2019,39(10):67-74.
[21]   安伯格等编著, 霍克克主译. 酵母遗传学方法实验指南.第二版. 北京: 科学出版社, 2009.
[21]   Amberg D C, et al. compiled, Huo K K, translater-in-chief. Experimental guidelines on yeast genetic methods. 2nd edition. Beijing: Science Press, 2009.
[22]   Ding J J, Liang G H, Zhang K, et al. Extra metabolic burden by displaying over secreting: growth, fermentation and enzymatic activity in cellobiose of recombinant yeast expressing β-glucosidase. Bioresour Technol, 2018,254:107-114.
doi: 10.1016/j.biortech.2017.12.030 pmid: 29413910
[23]   Cox J S, Shamu C E, Walter P. Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase. Cell, 1993,73:1197-1206.
doi: 10.1016/0092-8674(93)90648-a pmid: 8513503
[24]   Carlo J E, Norville J E, Mali P, et al. Genome engineering in Saccharomyces cerevisiae using CRISPR- Cas systems. Nucleic Acids Research, 2013,41(7):4336-4343.
doi: 10.1093/nar/gkt135 pmid: 23460208
[25]   Bao J C, Huang M T, Dina P, et al. Moderate expression of SEC16 increases protein secretion by Saccharomyces cerevisiae. Applied and Environmental Microbiology, 2017, 83 (14), Article Number: UNSP e03400-e03416.
doi: 10.1128/AEM.03400-16 pmid: 28476767
[1] BI Bo,ZHANG Yu,ZHAO Hui. Application of Yeast Hybrid System in Study of Off-target Rate of CRISPR/Cas9 Gene Editing System[J]. China Biotechnology, 2021, 41(6): 27-37.
[2] DONG Shu-xin,QIN Lei,LI Chun,LI Jun. Transcription Factor Engineering Harnesses Metabolic Networks to Meet Efficient Production in Cell Factories[J]. China Biotechnology, 2021, 41(4): 55-63.
[3] CHEN Ying,LI Qian. Patent Analysis on the Development Trend of Industrial Application of Special Yeast[J]. China Biotechnology, 2021, 41(4): 91-99.
[4] ZHAO Yan-shu,ZHANG Jin-hua,SONG Hao. Advances in Production of Monoclonal Antibody and Antibody Fragments in Engineered Prokaryotes and Yeast[J]. China Biotechnology, 2020, 40(8): 74-83.
[5] HU Yan,LI Hui,HE Cheng-wen,ZHU Jing,XIE Zhi-ping. Construction of a Yeast Strain for the Evaluation of Subcellular Fractionation[J]. China Biotechnology, 2020, 40(10): 10-23.
[6] HU Yan-hong,GONG Xue-mei,Ding Liu-liu,GAO Song,LI Ting-ting. Highly Efficient Expression and Purification of Ketoreductase CgKR2 Using Brevibacillus choshinensis SP3[J]. China Biotechnology, 2019, 39(8): 59-65.
[7] JIN Xue,SONG Jing-zhen,XIE Zhi-ping. Searching for the Subcellular Targeting Sequences of Ste2,a GPCR Protein in Saccharomyces cerevisiae[J]. China Biotechnology, 2019, 39(11): 39-53.
[8] Yi-ying WANG,Hai-rong CHENG. Cell Surface-Displaying the Lactose Hydrolase on Yarrowia lipolytica: a New Approach to Lactose Hydrolysis[J]. China Biotechnology, 2018, 38(8): 41-49.
[9] WANG Dan-dan, CHEN Tian, XU Liang-guo. Screening of VISA Interacting Proteins by Yeast Two-hybrid System[J]. China Biotechnology, 2017, 37(6): 63-69.
[10] WEI Xuan, HAO Ya-qiao, Susanna Leong Su Jan, WU Yan, LIU Ye-fei, ZHAO Hong-xin. Selective Uptake and Increased Accumulation of Free Saturated Fatty Acids by the Yeast Saccharomyces cerevisiae and Yarrowia lipolytica[J]. China Biotechnology, 2017, 37(2): 63-73.
[11] XU Yi-fan, LIU Ming-qiu. Expression and Purification Procedure of Nonspecific Endonuclease Sma and Its Performance Study[J]. China Biotechnology, 2017, 37(11): 89-93.
[12] HU Li-qiang, ZHENG Wen, ZHONG Yi, DU Dan, YANG Hao, GONG Meng. Comparison of Expression and Activity of Antiviral Protein RC28 in Escherichia coli and Pichia pastoris[J]. China Biotechnology, 2017, 37(1): 14-20.
[13] CHEN Dan, GUO Yu-zheng, BAN Jing-yang, LI Lu, WANG Wei-long, LI Ding-feng, LIU Yong. Development of Recombinant Human PepsinogenⅡ Calibrators Derived from Hansenula polymorpha[J]. China Biotechnology, 2016, 36(9): 38-46.
[14] GUO Xue-jiao, ZHA Jian, YAO Kun, WANG Xin, LI Bing-zhi, YUAN Ying-jin. Accelerated Ethanol Production by a Tolerant Saccharomyces cerevisiae to Inhibitor Mixture of Furfural, Acetic Acid and Phenol[J]. China Biotechnology, 2016, 36(5): 97-105.
[15] WANG Ya nan, SHEN Hong wei, YANG Xiao bing, ZHAO Zong bao. Effects of Lipid Production by Rhodosporidium toruloides under Conditions with Limitation of Different Nutrient Elements[J]. China Biotechnology, 2016, 36(11): 16-22.