Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2020, Vol. 40 Issue (10): 10-23    DOI: 10.13523/j.cb.2006053
    
Construction of a Yeast Strain for the Evaluation of Subcellular Fractionation
HU Yan,LI Hui,HE Cheng-wen,ZHU Jing,XIE Zhi-ping()
State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
Download: HTML   PDF(57696KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Background: An eukaryotic cell relies on its cellular organelles and organelles derived compartments to perform complicated biochemical reactions efficiently. One valid way to reveal the efficient cooperation between each organelle is to isolate distinct organelles. Although several techniques are developed to separate organelles, there is almost no easy method to assess the isolation process. Goal: Construct a strain of Saccharomyces cerevisiae to evaluate the efficiency of subcellular fractionation. Methods: A detection strain of Saccharomyces cerevisiae was constructed by traditional molecular biological and cell biological methods. One soluble protein and ten membrane proteins, chosen to represent subcellular compartments as well as plasma membrane, were grouped and labeled with different epitope tags in one strain. Immunofluorescence results were compared with fluorescent protein fusions to evaluate the impact of epitope tags on the localization of these proteins. Finally, density gradient centrifugation was used to illustrate the usability of the detection strain. Results: The detetion strain labeling all major subcellular compartments of Saccharomyces cerevisiae was constructed successfully. All epitope tagged organelle markers localized to the intended subcellular sites. Each compartment of Saccharomyces cerevisiae could be detected after density gradient centrifugation. Conclusion: The detection strain is a convenient tool for the evaluation of subcellular fractionation results. It is potentially useful for future research of Saccharomyces cerevisiae cell biology.



Key wordsYeast      Organelles      Autophagosome      Plasma membrane      Subcellular fractionation     
Received: 28 June 2020      Published: 10 November 2020
ZTFLH:  Q819  
Corresponding Authors: Zhi-ping XIE     E-mail: zxie@sjtu.edu.cn
Cite this article:

HU Yan,LI Hui,HE Cheng-wen,ZHU Jing,XIE Zhi-ping. Construction of a Yeast Strain for the Evaluation of Subcellular Fractionation. China Biotechnology, 2020, 40(10): 10-23.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2006053     OR     https://manu60.magtech.com.cn/biotech/Y2020/V40/I10/10

标签分组 亚细胞结构 标记蛋白
FLAG Vacuole Vph1
Nucleus Nab2
Lipid droplets Erg6
MYC ER Emc1
Perioxsome Pex3
Mitochondria Cox4
V5 Late Golgi Chs5
Early Golgi Anp1
Late endosome Snf7
VSV PM Pma1
Autophagosome Atg8
Table 1 Marker protein of subcellular conpartments in Saccharomyces cerevisiae
标签分组 质粒 酶切位点 质粒 酶切位点
FLAG ClhN-pVPH1-VPH1-2FLAG-URA BspEⅠ ClhN-pVPH1-VPH1-mCherry-TRP Pml
ClhN-pGAL1-NAB2-2FLAG-URA HindⅢ Clhn-pNAB2-NAB2-mCherry-TRP Avr
ClhN-pERG6-ERG6-2FLAG-URA Age ClhN-pERG6-ERG6-mCherry-TRP Age
MYC ClhN-pEMC1-EMC1-4MYC-URA HindⅢ ClhN-pEMC1-EMC1-mCherry-TRP Nsi
ClhN-pPEX3-PEX3-4MYC-URA HindⅢ ClhN-pPEX3-PEX3-DuDre-TRP BsrGⅠ
ClhN-pCOX4-COX4-12MYC-URA EcoRⅠ ClhN-pCOX4-COX4-DuDre-TRP BsrGⅠ
V5 ClhN-pCHS5-CHS5-4V5-URA BstXⅠ ClhN-pCHS5-CHS5-mCherry-TRP Afl
ClhN-pANP1-ANP1-4V5-URA EcoRⅠ ClhN-pANP1-ANP1-mCherry-TRP Mfe
ClhN-pSNF7-SNF7-4V5-URA BstBⅠ ClhN-pSNF7-SNF7-mCherry-TRP Mfe
VSV ClhN-pPMA1-PMA1-3VSV-URA PflFⅡ BS-TRP-pPMA1-PMA1-GFP PflFⅡ
ClhN-pATG8-9VSV-ATG8-URA SnaBⅠ BS-TRP-pATG8-GFP-ATG8 SnaBⅠ
Table 2 Plasmids and their restriction sites
大质粒 酶切位点
ClhN-UG74NAT-pVPH1-VPH1-2FLAG-pNAB2-NAB2-2FLAG-pERG6-ERG6-2FLAG EcoRⅠ
ClhN-HPH-pEMC1-EMC1-4MYC-pPEX3-PEX3-4MYC-pCOX4-COX4-12MYC BamHⅠ
ClhN-UG6K-pCHS5-CHS5-4V5-pANP1-ANP1-4V5-pSNF7-SNF7-4V5 BsrGⅠ
ClhN-pATG8-9VSV-ATG8-pPMA1-PMA1-3VSV-URA PflFⅡ
Table 3 Large plasmids and their restriction sites
菌株编号 基因型
YOT001 TN124 pVPH1VPH1-2FLAG-URA
YOT002 TN124 pNAB2NAB2-2FLAG-URA
YOT003 TN124 pERG6ERG6-2FLAG-URA
YOT004 TN124 pEMC1EMC1-4MYC-URA
YOT005 TN124 pPEX3PEX3-4MYC-URA
YOT006 TN124 pCOX4COX4-12MYC-URA
YOT007 TN124 pCHS5CHS5-4V5-URA
YOT008 TN124 pANP1ANP1-4V5-URA
YOT009 TN124 pSNF7SNF7-4V5-URA
YOT010 TN124 pPMA1PMA1-3VSV-URA
YOT011 TN124 pATG8∷9VSV-ATG8-URA
YOT012 YOT001 pVPH1VPH1-mCherry-TRP
YOT013 YOT002 pNAB2NAB2-mCherry-TRP
YOT014 YOT003 pERG6ERG6-mCherry-TRP
YOT015 YOT004 pEMC1EMC1-mCherry-TRP
YOT016 YOT005 pPEX3PEX3-DuDre-TRP
菌株编号 基因型
YOT017 YOT006 pCOX4COX4-DuDre-TRP
YOT018 YOT007 pCHS5CHS5-mCherry-TRP
YOT019 YOT008 pANP1ANP1-mCherry-TRP
YOT020 YOT009 pSNF7SNF7-mCherry-TRP
YOT021 YOT010 pPMA1PMA1-GFP-TRP
YOT022 YOT011 pATG8∷GFP-ATG8-TRP
YOT023 TN124 pVPH1VPH1-2FLAG-pNAB2-NAB2-2FLAG-pERG6-ERG6-2FLAG-NAT
YOT024 YOT023 pCHS5CHS5-4V5-pANP1-ANP1-4V5-pSNF7-SNF7-4V5-UG6K
YOT025 YOT024 pEMC1EMC1-4MYC-pPEX3-PEX3-4MYC-pCOX4-COX4-12MYC-HYG
YOT027 YOT025 pATG8∷pPMA1-PMA1-3VSV-9VSV-ATG8-URA
YOT028 TN124 pATG8GFP-ATG8-URA
YOT029 TN124 pPMA1PMA1-GFP-TRP
YOT030 TN124 pPEX1PEX1-GFP-URA
YZM458 TN124 pVPH1VPH1-2GFP-URA
YZM018 TN124 pNAB2NAB2-GFP-URA
YZM030 TN124 pERG6ERG6-GFP-URA
YZM021 TN124 pEMC1EMC1-GFP-URA
YZM456 TN124 pCOX4COX4-GFP-URA
YZM005 TN124 pCHS5CHS5-GFP-URA
YZM452 TN124 pANP1ANP1-GFP-URA
YZM008 TN124 pSNF7SNF7-GFP-URA
Table 4 Yeast strain list
Fig.1 Western blot results of YOT027 (a)Flag tag(Vph1, Nab2, Erg6) (b) Myc tag(Emc1, Pex3, Cox4) (c) V5 tag(Chs5, Anp1, Snf7) (d) Vsv tag(Pma1, Atg8)
Fig.2 Conlocalization between immunofluorescence and fluorescence proteins (a) Emc1-4myc and Emc1-mCherry (b) Vph1-2flag and Vph1-mCherry (c) Cox4-12myc and Cox4-DuDre (d) Pma1-3vsv and Pma1-GFP (e) Nab2-2flag, Nab2-mCherry and Nab2(DAPI) (f) Pex3-4myc and Pex3-DuDre (g) Erg6-2flag and Erg6-mCherry (h) Anp1-4v5 and Anp1-mCherry (i) Chs5-4v5 and Chs5-mCherry (j) Snf7-4v5 and Snf7-mCherry (k) 9vsv-Atg8 and GFP-Atg8
Fig.3 Test of different immunofluorescence conditions Test of different perforation buffer of immunofluorescence by detecting the colocalization between Pma1-3vsv and Pma1-GFP. The best one is PBS, 1mg/mL BSA, 0.2% Triton×100, 0.5% SDS and 2.4mol/L sorbitol
Fig.4 Density gradient centrifugation results of YOT027 Density gradient centrifugation results of Vph1-2flag ((a), (b), (c)), Nab2-2flag ((a),(b),(d)), Erg6-2flag ((a), (b), (e)), Emc1-4myc((f), (g), (h)), Pex3-4myc((f), (g), (i)), Cox4-12myc((f), (g), (j)), Chs5-4v5((k), (l), (m)), Anp1-4v5((k), (l), (n)), Snf7-4v5((k), (l), (o)), Pma1-3vsv((p), (q), (r)), 9vsv-Atg8((p), (q), (s)) of YOT027. GFP tagged proteins are set as control
[1]   Wang Y, Lilley K S, Oliver S G, et al. A protocol for the subcellular fractionation of Saccharomyces cerevisiae using nitrogen cavitation and density gradient centrifugation. Yeast, 2014,31(4):127-135.
doi: 10.1002/yea.3002 pmid: 24510422
[2]   Stephanie E D, Scott D E, et al. Isolation of subcellular fractions from the yeast Saccharomyces cerevisiae. Current Protocols in Cell Biology, 2000,3(8):1-68.
[3]   Day K J, J C Casler, B S Glick, et al. Budding yeast has a minimal endomembrane system. Dev Cell, 2018,44(1):56-72 e54.
doi: 10.1016/j.devcel.2017.12.014 pmid: 29316441
[4]   Barlowe C K, Miller E A. Secretory protein biogenesis and traffic in the early secretory pathway. Genetics, 2013,193(2):383-410.
doi: 10.1534/genetics.112.142810 pmid: 23396477
[5]   Gia K V, Melissa M R, Tom A R. Structural organization of the endoplasmic reticulum. EMBO Reports, 2002,3(10):944-950.
doi: 10.1093/embo-reports/kvf202 pmid: 12370207
[6]   Chen S L, Novick P, Ferro-Novick S. ER structure and function. Curr Opin Cell Biol, 2013,25(4):428-433.
doi: 10.1016/j.ceb.2013.02.006 pmid: 23478217
[7]   Preuss D, Mulholland J, Franzusoff A, et al. Characterization of the Saccharomyces Golgi complex through the cell cycle by immunoelectron microscopy. Mol Biol Cell, 1992,3:789-803.
doi: 10.1091/mbc.3.7.789 pmid: 1381247
[8]   Losev E, Reinke C A, Jellen J, et al. Golgi maturation visualized in living yeast. Nature, 2006,441:1002-1006.
doi: 10.1038/nature04717 pmid: 16699524
[9]   Hugh R B Pelham. Insights from yeast endosomes. Current Opinion in Cell Biology, 2002,14:454-462.
doi: 10.1016/s0955-0674(02)00352-6 pmid: 12383796
[10]   Weisman L S. Yeast vacuole inheritance and dynamics. Annu Rev Gene, 2003,37:435-460.
[11]   Daniel J K, Paul K H, Scott D. Emr. The fungal vacuole: composition, function, and biogenesis. Microbiological Reviews, 1990,54(3):266-292.
pmid: 2215422
[12]   Joshi A S, B Nebenfuehr, V Choudhary, et al. Lipid droplet and peroxisome biogenesis occur at the same ER subdomains. Nat Commun, 2018,9(1):2940.
doi: 10.1038/s41467-018-05277-3 pmid: 30054481
[13]   Wang C W. Lipid droplet dynamics in budding yeast. Cell Mol Life Sci, 2015,72(14):2677-2695.
doi: 10.1007/s00018-015-1903-5 pmid: 25894691
[14]   Yuan W, M Veenhuis, I J van der Klei. The birth of yeast peroxisomes. Biochim Biophys Acta, 2016,1863(5):902-910.
pmid: 26367802
[15]   Lazarow P B, Fujiki Y. Biogenesis of peroxisomes. Ann Rev Cell Bioi, 1985,1:489-530.
[16]   Tabak H F, I Braakman, A vander Zand. Peroxisome formation and maintenance are dependent on the endoplasmic reticulum. Annu Rev Biochem, 2013,82:723-744.
pmid: 23414306
[17]   Angela T, Susan M G. Structure and function in the budding yeast nucleus. Genetics, 2012,192:107-129.
doi: 10.1534/genetics.112.140608 pmid: 22964839
[18]   Taddei A, H Schober, S M Gasser. The budding yeast nucleus. Cold Spring Harbor Perspectives in Biology, 2010,2(8):a000612.
doi: 10.1101/cshperspect.a000612 pmid: 20554704
[19]   Malina C, Larsson C, Nielsen J. Yeast mitochondria: an overview of mitochondrial biology and the potential of mitochondrial systems biology. FEMS Yeast Res, 2018,18(5).
doi: 10.1093/femsyr/foy021 pmid: 29518226
[20]   Xie Z P, Daniel J K. Autophagosome formation: core machinery and adaptations. Nature Cell Biology, 2007,9(10):1102-1109.
doi: 10.1038/ncb1007-1102 pmid: 17909521
[21]   Aguado C, E Perez-Jimenez, M Lahuerta, et al. Isolation of lysosomes from mammalian tissues and cultured cells. Methods Mol Biol, 2016,1449:299-311.
doi: 10.1007/978-1-4939-3756-1_19 pmid: 27613045
[22]   Manner A, M Islinger. Isolation of peroxisomes from rat liver and cultured hepatoma cells by density gradient centrifugation. Methods Mol Bio, 2017,1595:1-11.
[23]   Huber L A, K Pfaller, I Vietor. Organelle proteomics: implications for subcellular fractionation in proteomics. Circ Res, 2003,92(9):962-968.
doi: 10.1161/01.RES.0000071748.48338.25 pmid: 12750306
[24]   E Rieder, Scott D E. Overview of subcellular fractionation procedures for the yeast Saccharomyces cerevisiae. Current Protocols in Cell Biology, 2000,3(7):1-25.
[25]   De Duve C. Exploring cells with a centrifuge. Nobel Lecture, 1974.
[26]   Meselson M, Stahl F W, Vinograd J. Proc. Nal. Acad. Sci. U. S, 1957,43:581.
[27]   Luis S M, Mercedes G De Veca, Maria Colombo, et al. Effect of pH and ATP on the equilibrium density of lysosomes. Journal of Cellular Physiology, 1993,156:303-310.
doi: 10.1002/jcp.1041560212 pmid: 8344987
[28]   G Eric Schaller. Isolation of plant organelles and structures: methods and protocols. Methods in Molecular Biology, 2017,1511:119-129.
doi: 10.1007/978-1-4939-6533-5_10 pmid: 27730607
[29]   Uwe Michelsen, Jörg von Hagen. Isolation of subcellular organelles and structures. Methods in Enzymology, 2009,463:305-329.
doi: 10.1016/S0076-6879(09)63019-6 pmid: 19892179
[30]   Anderson N G. An introduction to particle separations in zonal centrifuges. Natl Cancer Inst Monogr, 1996,21:9-39.
pmid: 5926674
[31]   Nirmal S B, R Victor Rebois. Rate zonal sedimentation of proteins in one hour or less. Analytical Biochemistry, 1997,251:103-109.
doi: 10.1006/abio.1997.2255 pmid: 9300089
[32]   Wilson M A, Cascarano J. Biochemical heterogeneity of rat liver mitochondria separated by rate zonal centrifugation. Biochem, 1972, J 129: 209-218.
[33]   Earle S, Gel F. Methods in Enzymology, 1990,182:317-328.
doi: 10.1016/0076-6879(90)82027-y pmid: 2314245
[34]   Albert P K, T Page Owen, et al. Organelle isolation by magnetic immunoabsorption. BioTechniques, 1999,26(2):336-343.
doi: 10.2144/99262rr04 pmid: 10023546
[35]   Takeshi N, Akira M, Yoh W, et al. Novel system for monitoring autophagy in the yeast Saccharomyces cerevisiae. Biochemical and Biophysical Research Communication, 1995,10(1):126-132.
[36]   Im K, Mareninov S, Diaz M F P, et al. An introduction to performing immunofluorescence staining. Methods Mol Biol, 2019,1897:299-311.
doi: 10.1007/978-1-4939-8935-5_26 pmid: 30539454
[38]   Zhu J, Zhang Z T, Tang S W, et al. A validated set of fluorescent-protein-based markers for major organelles in yeast (Saccharomyces cerevisiae). Molecular Biology and Physiology, 2019,10(5):e01691-19.
[39]   Stadler C, Rexhepaj E, Singan V R, et al. Immunofluorescence and fluorescent protein tagging show high correlation for protein localization in mammalian cells. Nat Methods, 2013,10:315-323.
doi: 10.1038/nmeth.2377 pmid: 23435261
[40]   Johnson M, Flick J S, Pexton T. Multiple mechanisms providerapid and stringent glucose repression of GAL gene expression in Saccharomyces cerevisiae. Mol. Cell. Biol, 1994,14:3834-3841.
doi: 10.1128/mcb.14.6.3834 pmid: 8196626
[41]   Margarita C, Christian U. Purification and in vitro analysis of yeast vacuoles. Methods in Enzymology, 2008,451:177-196.
doi: 10.1016/S0076-6879(08)03213-8 pmid: 19185721
[42]   Jaana M, Alex M, Paul D. Isolation of cellular lipid droplets: two purification techniques starting from yeast cells and human placentas. Journal of Visualized Experiments, 2014,86(e50981):1-10.
[43]   Ben D, Astrid K. Purification of Yeast Peroxisomes, 2006,313:21-26.
[44]   Istvan R B, Liza A P. Purification and subfractionation of mitochondria from the yeast Saccharomyces cerevisiae. Methods in Cell Biology, 2007,80:45-64.
doi: 10.1016/S0091-679X(06)80002-6 pmid: 17445688
[45]   Birgit S K, Rainer F, Fabienne C, et al. Partial purification and characterization of early and late endosomes from yeast. The Journal of Biological Chemistry, 1993,268(19):14376-14386.
pmid: 8314797
[46]   Yu Chen Lee, Martina S G, Djuro J, et al. Plasma membrane isolation using immobilized concanavalin a magnetic beads. Liver Proteomics: Methods and Protocols, Methods in Molecular Biology, 2012,909:29-41.
doi: 10.1007/978-1-61779-959-4_3 pmid: 22903707
[47]   Levental K R, Levental I. Isolation of giant plasma membrane vesicles for evaluation of plasma membrane structure and protein partitioning. Methods in Membrane Lipids, Methods in Molecular Biology, 2015,1232:65-77.
[48]   Chihiro T, Yuko I A, Yuji Moriyasu. Isolation of autolysosomes from tobacco BY-2 cells. Methods in Molecular Biology, 2017,1511:151-161.
doi: 10.1007/978-1-4939-6533-5_12 pmid: 27730609
[49]   Ja Yeon Kim, Wang L Y, Lee Jiyoung, et al. Hepatitis c virus induces the localization of lipid rafts to autophagosomes for its RNA replication. Journal of Virology, 2017,91(20):e00541-17.
doi: 10.1128/JVI.00541-17 pmid: 28747506
[50]   G Eric Schaller. Isolation of endoplasmic reticulum and its membrane. Methods in Molecular Biology, 2017,1511:119-129.
doi: 10.1007/978-1-4939-6533-5_10 pmid: 27730607
[51]   Harriet T P, Katy C, Bernhard K, et al. Isolation and proteomic characterization of the arabidopsis Golgi defines functional and novel components involved in plant cell wall biosynthesis. Plant Physiology, 2012,159:12-26.
pmid: 22430844
[1] BI Bo,ZHANG Yu,ZHAO Hui. Application of Yeast Hybrid System in Study of Off-target Rate of CRISPR/Cas9 Gene Editing System[J]. China Biotechnology, 2021, 41(6): 27-37.
[2] DONG Shu-xin,QIN Lei,LI Chun,LI Jun. Transcription Factor Engineering Harnesses Metabolic Networks to Meet Efficient Production in Cell Factories[J]. China Biotechnology, 2021, 41(4): 55-63.
[3] CHEN Ying,LI Qian. Patent Analysis on the Development Trend of Industrial Application of Special Yeast[J]. China Biotechnology, 2021, 41(4): 91-99.
[4] ZHAO Yan-shu,ZHANG Jin-hua,SONG Hao. Advances in Production of Monoclonal Antibody and Antibody Fragments in Engineered Prokaryotes and Yeast[J]. China Biotechnology, 2020, 40(8): 74-83.
[5] WANG Ke-ru,ZHU Hong-liang. Functions of RNA Editing Factors and Its Mechanisms in Plant Organelles[J]. China Biotechnology, 2020, 40(3): 125-131.
[6] ZHANG Xiao-mao,GUO Jing-han,HONG Jie-fang,LU Hai-yan,DING Juan-juan,ZOU Shao-lan,FAN Huan. Evaluation of UPR Response in Yeast by Using UPRE-lac Z as a Reporter Gene[J]. China Biotechnology, 2020, 40(10): 1-9.
[7] JIN Xue,SONG Jing-zhen,XIE Zhi-ping. Searching for the Subcellular Targeting Sequences of Ste2,a GPCR Protein in Saccharomyces cerevisiae[J]. China Biotechnology, 2019, 39(11): 39-53.
[8] Yi-ying WANG,Hai-rong CHENG. Cell Surface-Displaying the Lactose Hydrolase on Yarrowia lipolytica: a New Approach to Lactose Hydrolysis[J]. China Biotechnology, 2018, 38(8): 41-49.
[9] WANG Dan-dan, CHEN Tian, XU Liang-guo. Screening of VISA Interacting Proteins by Yeast Two-hybrid System[J]. China Biotechnology, 2017, 37(6): 63-69.
[10] WEI Xuan, HAO Ya-qiao, Susanna Leong Su Jan, WU Yan, LIU Ye-fei, ZHAO Hong-xin. Selective Uptake and Increased Accumulation of Free Saturated Fatty Acids by the Yeast Saccharomyces cerevisiae and Yarrowia lipolytica[J]. China Biotechnology, 2017, 37(2): 63-73.
[11] HU Li-qiang, ZHENG Wen, ZHONG Yi, DU Dan, YANG Hao, GONG Meng. Comparison of Expression and Activity of Antiviral Protein RC28 in Escherichia coli and Pichia pastoris[J]. China Biotechnology, 2017, 37(1): 14-20.
[12] GUO Xue-jiao, ZHA Jian, YAO Kun, WANG Xin, LI Bing-zhi, YUAN Ying-jin. Accelerated Ethanol Production by a Tolerant Saccharomyces cerevisiae to Inhibitor Mixture of Furfural, Acetic Acid and Phenol[J]. China Biotechnology, 2016, 36(5): 97-105.
[13] WANG Ya nan, SHEN Hong wei, YANG Xiao bing, ZHAO Zong bao. Effects of Lipid Production by Rhodosporidium toruloides under Conditions with Limitation of Different Nutrient Elements[J]. China Biotechnology, 2016, 36(11): 16-22.
[14] HUANG Xiang-feng, WANG Yi-han, LIU Jia-nan, LIU Jia, LU Li-jun. Research Progress in the Impacts of Promoting Factors on Biosurfactants Synthesis[J]. China Biotechnology, 2014, 34(7): 81-88.
[15] XU Ji-fei, ZHANG Yan-fen, ZHAO Gui-qi, ZHAO Ji. Research Progress in Different Substrates Used by Oleaginous Yeast for Lipid Production[J]. China Biotechnology, 2013, 33(9): 111-118.