Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2018, Vol. 38 Issue (10): 74-81    DOI: 10.13523/j.cb.20181009
Orginal Article     
The Development of Downstream Continuous Purification Technology of Recombinant Protein
Wei ZHAO,Jing-da LI,Qing-ping LIU()
Key Laboratory of Lipid Metabolism in Liaoning Province,College of Life Science and Technology,Dalian University,Dalian 116622, China
Download: HTML   PDF(769KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Purification of recombinant proteins has always been a bottleneck limiting its production. The traditional purification process is mostly batch based mode, which is characterized by high cost, low treatment efficiency and low recovery. Recently, with the development and application of continuous centrifugation, filtration, chromatography, and technologies, they have effectively overcome the defects of traditional processes. Based on downstream purification processes, the characteristics and applications of continuous technologies involved in large-scale industrial purification are summarized and analyzed. The core technology in the purification process - chromatography,and the prospects for the future technology of recombinant proteins purification are prospected, which is aimed at providing new theoretical evidences and guidance for optimization of biopharmaceutical production process.



Key wordsContinuous purification technology      Industrial production      Protein purification      Chromatography     
Received: 28 May 2018      Published: 09 November 2018
ZTFLH:  Q819  
Corresponding Authors: Qing-ping LIU     E-mail: qingpingliu40@126.com
Cite this article:

Wei ZHAO,Jing-da LI,Qing-ping LIU. The Development of Downstream Continuous Purification Technology of Recombinant Protein. China Biotechnology, 2018, 38(10): 74-81.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20181009     OR     https://manu60.magtech.com.cn/biotech/Y2018/V38/I10/74

Fig.1 Schematic of continuous refolding system
Fig.2 Flow chart of continuous chromatography
[1]   Walsh G . Biopharmaceutical benchmarks 2010. Nature Biotechnology, 2014,32(10):992-998.
doi: 10.1038/nbt.3040
[2]   Legastelois I, Buffin S, Peubez I , et al. Non-conventional expression systems for the production of vaccine proteins and immunotherapeutic molecules. Hum Vaccin Immunother, 2016,13(4):947-961.
doi: 10.1080/21645515.2016.1260795 pmid: 27905833
[3]   Gronemeyer P, Ditz R, Strube J . Trends in upstream and downstream process development for antibody manufacturing. Bioengineering, 2014,1(4):188-212.
doi: 10.3390/bioengineering1040188 pmid: 28955024
[4]   崔超, 呼延霆, 尹大川 . 重组标签蛋白在蛋白质纯化中的研究进展. 现代生物医学进展, 2014,14(32):6372-6378.
[4]   Cui C, Hu Y T, Yin D C . Research progress of recombinant tagged proteins in protein purification. Progress in Modern Biomedicine, 2014,14(32):6372-6378.
[5]   Kosobokova E N, Skrypnik K A, Kosorukov V S . Overview of fusion tags for recombinant proteins. Biochemistry, 2016,81(3):187-200.
doi: 10.1134/S0006297916030019 pmid: 27262188
[6]   Fields C, Li P, O'Mahony J J ,et al. Advances in affinity ligand-functionalized nanomaterials for biomagnetic separation. Biotechnology & Bioengineering, 2016,113(1):11-25.
doi: 10.1002/bit.25665 pmid: 26032605
[7]   Rathore A S, Agarwal H, Sharma A K , et al. Continuous processing for production of biopharmaceuticals. Preparative Biochemistry & Biotechnology, 2015,45(8):836-849.
doi: 10.1080/10826068.2014.985834 pmid: 25674930
[8]   Rathore A S, Kapoor G . Application of process analytical technology for downstream purification of biotherapeutics. Journal of Chemical Technology & Biotechnology, 2015,90(2):228-236.
doi: 10.1002/jctb.4447
[9]   Zydney A L . Continuous downstream processing for high value biological products: A review. Biotechnology & Bioengineering, 2016,113(3):465-475.
doi: 10.1002/bit.25695 pmid: 26153056
[10]   Buyel J F, Gruchow H M, Fischer R . Depth filters containing diatomite achieve more efficient particle retention than filters solely containing cellulose fibers. Frontiers in Plant Science, 2015,6:1134-1139.
doi: 10.3389/fpls.2015.01134 pmid: 4685141
[11]   Figueredocardero A, Martínez E, Chico E , et al. Rotating cylindrical filters used in perfusion cultures: CFD simulations and experiments. Biotechnology Progress, 2015,30(5):1093-1102.
doi: 10.1002/btpr.1945 pmid: 25059206
[12]   Pollock J, Ho S V, Farid S S . Fed-batch and perfusion culture processes: economic,environmental,and operational feasibility under uncertainty. Biotechnology & Bioengineering, 2013,110(1):206-219.
doi: 10.1002/bit.24608 pmid: 22806692
[13]   Vallez-Chetreanu F, Fraisse Ferreira L G, Rabe R ,et al. An on-line method for the reduction of fouling of spin-filters for animal cell perfusion cultures. Journal of Biotechnology, 2007,130(3):265-273.
doi: 10.1016/j.jbiotec.2007.04.007 pmid: 17543407
[14]   Clincke M F, M?lleryd C, Zhang Y , et al. Very high density of CHO cells in perfusion by ATF or TFF in wave bioreactor?.Part I.Effect of the cell density on the process. Biotechnology Progress, 2013,29(3):754-767.
doi: 10.1002/btpr.1704 pmid: 23436789
[15]   Kelly W, Scully J, Zhang D , et al. Understanding and modeling alternating tangential flow filtration for perfusion cell culture. Biotechnology Progress, 2014,30(6):1291-1300.
doi: 10.1002/btpr.1953 pmid: 25078788
[16]   Bosco M, Paillet C, Mauro L , et al. Alternating flow filtration as an alternative to internal spin filter based perfusion process: Impact on productivity and product quality. Biotechnology Progress, 2017,33(4):1010-1014.
doi: 10.1002/btpr.2487 pmid: 28445603
[17]   Femmer T, Carstensen F, Wessling M . A membrane stirrer for product recovery and substrate feeding. Biotechnology & Bioengineering, 2015,112(2):331-338.
doi: 10.1002/bit.25448 pmid: 25212847
[18]   Fernandes C S, Dos S R, Ottengy S , et al. Affitins for protein purification by affinity magnetic fishing. Journal of Chromatography A, 2016,1457(Jul 29):50-58.
doi: 10.1016/j.chroma.2016.06.020 pmid: 27342136
[19]   Kilburn D G, Clarke D J, Coakley W T , et al. Enhanced sedimentation of mammalian cells following acoustic aggregation. Biotechnology & Bioengineering, 1989,34(4):559-562.
doi: 10.1002/bit.260340415 pmid: 18588136
[20]   Wingfield P T, Palmer I, Liang S M . Folding and purification of insoluble (inclusion body) proteins from Escherichia coli. Current Protocols in Protein Science, 2001, 78: 6.5.16.-6.5.30.
doi: 10.1002/0471140864.ps0605s78 pmid: 25367010
[21]   Lei X, Wei W, Zhou B , et al. Streamlined protein expression and purification using cleavable self-aggregating tags. Microbial Cell Factories, 2011,10(1):42.
doi: 10.1186/1475-2859-10-42 pmid: 3124420
[22]   Lin Z, Zhao Q, Xing L , et al. Aggregating tags for column-free protein purification. Biotechnology Journal, 2015,10(12):1877-1886.
doi: 10.1002/biot.201500299 pmid: 26556016
[23]   Yadav D K, Yadav N, Yadav S , et al. An insight into fusion technology aiding efficient recombinant protein production for functional proteomics. Archives of Biochemistry & Biophysics, 2016,612:57-77.
doi: 10.1016/j.abb.2016.10.012 pmid: 27771300
[24]   ?pela Peternel, Radovan Komel . Isolation of biologically active nanomaterial (inclusion bodies) from bacterial cells. Microbial Cell Factories, 2010,9(1):1-16.
doi: 10.1186/1475-2859-9-1 pmid: 20067629
[25]   Upadhyay V, Singh A, Jha D , et al. Recovery of bioactive protein from bacterial inclusion bodies using trifluoroethanol as solubilization agent. Microbial Cell Factories, 2016,15(1):100-106.
doi: 10.1186/s12934-016-0504-9 pmid: 4898390
[26]   Qi X, Sun Y, Xiong S . A single freeze-thawing cycle for highly efficient solubilization of inclusion body proteins and its refolding into bioactive form. Microbial Cell Factories, 2015,14(1):24.
doi: 10.1186/s12934-015-0208-6 pmid: 4343044
[27]   Eggenreich B, Willim M, Wurm D J , et al. Production strategies for active heme-containing peroxidases from E.coli inclusion bodies - a review: Biotechnology Reports, 2016,10(C):75-83.
doi: 10.1016/j.btre.2016.03.005
[28]   Pan S, Zelger M, Jungbauer A , et al. Integrated continuous dissolution,refolding and tag removal of fusion proteins from inclusion bodies in a tubular reactor. Journal of Biotechnology, 2014,185:39-50.
doi: 10.1016/j.jbiotec.2014.06.010 pmid: 24950296
[29]   Kelley B . Industrialization of mAb production technology:The bioprocessing industry at a crossroads. Mabs, 2009,1(5):443-452.
doi: 10.4161/mabs.1.5.9448 pmid: 20065641
[30]   Ghosh P, Vahedipour K, Lin M , et al. Zonal rate model for axial and radial flow membrane chromatography.Part Ⅰ: knowledge transfer across operating conditions and scales. Biotechnology & Bioengineering, 2013,110(4):1129-1141.
[31]   Godawat R, Brower K, Jain S , et al. Periodic counter-current chromatography-design and operational considerations for integrated and continuous purification of proteins. Biotechnology Journal, 2012,7(12):1496-1508.
doi: 10.1002/biot.201200068 pmid: 23070975
[32]   Mahajan E, George A, Wolk B . Improving affinity chromatography resin efficiency using semi-continuous chromatography. Journal of Chromatography A, 2012,1227(5):154-162.
doi: 10.1016/j.chroma.2011.12.106 pmid: 22265178
[33]   Girard V, Hilbold N J, Ng C K , et al. Large-scale monoclonal antibody purification by continuous chromatography,from process design to scale-up. Journal of Biotechnology, 2015,213(10):65-73.
doi: 10.1016/j.jbiotec.2015.04.026 pmid: 25962790
[34]   Angarita M, Müller-Sp?th T, Baur D , et al. Twin-column Capture SMB:a novel cyclic process for protein A affinity chromatography. Journal of Chromatography A, 2015,1389:85-95.
doi: 10.1016/j.chroma.2015.02.046 pmid: 25748537
[35]   Steinebach F, Müller-Sp?th T, Morbidelli M . Continuous counter-current chromatography for capture and polishing steps in biopharmaceutical production. Biotechnology Journal, 2016,11(9):1126-1141.
doi: 10.1002/biot.201500354 pmid: 27376629
[36]   Dutta A K, Tan J, Napadensky B , et al. Performance optimization of continuous countercurrent tangential chromatography for antibody capture. Biotechnology Progress, 2016,32(2):430-439.
doi: 10.1002/btpr.2250 pmid: 26914276
[37]   Shinkazh O, Kanani D, Barth M , et al. Countercurrent tangential chromatography for large-scale protein purification. Biotechnology & Bioengineering, 2011,108(3):582.
doi: 10.1002/bit.22960 pmid: 20939008
[38]   Dutta A K, Tran T, Napadensky B , et al. Purification of monoclonal antibodies from clarified cell culture fluid using Protein A capture continuous countercurrent tangential chromatography. Journal of Biotechnology, 2015,213:54-64.
doi: 10.1016/j.jbiotec.2015.02.026 pmid: 25747172
[39]   Dutta A K, Fedorenko D, Tan J , et al. Continuous countercurrent tangential chromatography for mixed mode post-capture operations in monoclonal antibody purification. Journal of Chromatography A, 2017. 1511:37-44.
doi: 10.1016/j.chroma.2017.06.018 pmid: 28697935
[40]   Rajendran A, Paredes G, Mazzotti M . Simulated moving bed chromatography for the separation of enantiomers. Journal of Chromatography A, 2009,1216(4):709.
doi: 10.1016/j.chroma.2008.10.075 pmid: 19004446
[41]   Mun S, Wang N L . Improvement of the performances of a tandem simulated moving bed chromatography by controlling the yield level of a key product of the first simulated moving bed unit. Journal of Chromatography A, 2017,1488:104-112.
doi: 10.1016/j.chroma.2016.12.052
[42]   Martínez Cristancho C A, Seidel-Morgenstern A . Purification of single-chain antibody fragments exploiting pH-gradients in simulated moving bed chromatography. Journal of Chromatography A, 2016,1434:29-38.
doi: 10.1016/j.chroma.2016.01.001 pmid: 26810806
[43]   Kyung-Min K, Chang-Ha L . Backfill-simulated moving bed operation for improving the separation performance of simulated moving bed chromatography. Journal of Chromatography A, 2013,1311(18):79.
doi: 10.1016/j.chroma.2013.08.058 pmid: 24007684
[44]   Weeden G S Jr, Wang N L . Speedy standing wave design,optimization,and scaling rules of simulated moving bed systems with linear isotherms. Journal of Chromatography A, 2017,1493:19-40.
doi: 10.1016/j.chroma.2017.02.038 pmid: 28292516
[45]   Subramanian G . Continuous Processing in Pharmaceutical Manufacturing. 2014.
[46]   Hardick O, Dods S, Stevens B , et al. Nanofiber adsorbents for high productivity downstream processing. Biotechnology & Bioengineering, 2013,110(4):1119-1128.
doi: 10.1002/bit.24765 pmid: 23097054
[47]   Dong J, Bruening M L . Functionalizing Microporous Membranes for Protein Purification and Protein Digestion. Annual Review of Analytical Chemistry, 2015,8(1):81-100.
doi: 10.1146/annurev-anchem-071114-040255 pmid: 26001953
[1] ZHANG Sai,WANG Gang,LIU Zhong-ming,LI Hui-jun,WANG Da-ming,QIAN Chun-gen. Development and Performance Evaluation of a Rapid Antigen Test for SARS-CoV-2[J]. China Biotechnology, 2021, 41(5): 27-34.
[2] ZHANG Sai,XIANG Le,LI Lin-hai,LI Hui-jun,WANG Gang,QIAN Chun-gen. Development and Performance Evaluation of A Rapid IgM-IgG Combined Antibody Test for 2019 Novel Coronavirus Infection[J]. China Biotechnology, 2020, 40(8): 1-9.
[3] ZHAO Yan-shu,ZHANG Jin-hua,SONG Hao. Advances in Production of Monoclonal Antibody and Antibody Fragments in Engineered Prokaryotes and Yeast[J]. China Biotechnology, 2020, 40(8): 74-83.
[4] QIN Xu-ying,YANG Hong-jiang. Research Progress on Techniques for Separation, Purification of Bacteriophages[J]. China Biotechnology, 2020, 40(5): 78-83.
[5] WANG Meng,SONG Hui-ru,CHENG Yu-jie,WANG Yi,YANG Bo,HU Zheng. Accurate Detection of Streptococcus pneumoniae by Using Ribosomal Protein L7 / L12 as Molecular Marker[J]. China Biotechnology, 2020, 40(4): 34-41.
[6] Yan GAO,Jing-jing DU,Bin WANG,Qi LIU,Zhi-qiang SHEN. Study on β-Propiolactone in Inactivation Process of Rabies Vaccine by Gas Chromatography[J]. China Biotechnology, 2019, 39(6): 25-31.
[7] Da-wei FU,Ying-ying SUN,wei XU. Efficient Heterologous Expression, Purification and Activity Analysis of Fusion Protein NusA-hRI[J]. China Biotechnology, 2019, 39(3): 21-28.
[8] Gong CHENG,Si-ming JIAO,Li-shi REN,Cui FENG,Yu-guang DU. Preparation and Composition Analysis of Chitooligosaccharides with Low Degree of Deacetylation by Hydrolysis of Bacillus subtilis Chitosanase[J]. China Biotechnology, 2018, 38(9): 19-26.
[9] Jun-jun CHEN,Ying LOU,Yuan-xing ZHANG,Qin LIU,Xiao-hong LIU. Expression and Purification of Proliferating Cell Nuclear Antigen in Spodoptera frugiperda Cells[J]. China Biotechnology, 2018, 38(7): 14-20.
[10] Qing-meng LI,Sheng-tao LI,Ning WANG,Xiao-dong GAO. Expression, Purification and Activity Assay of Yeast α-1,2 Mannosyltransferase Alg11[J]. China Biotechnology, 2018, 38(6): 26-33.
[11] Yuan-qiao CHEN,Ding-pei LONG,Xiao-xue DOU,Run QI,Ai-chun ZHAO. Studies on the Protein Purification Ability of an ELP30-Tag in Prokaryotic Expression System[J]. China Biotechnology, 2018, 38(2): 54-60.
[12] WANG Ming-xuan, CHEN Hai-qin, GU Zhen-nan, CHEN Wei, CHEN Yong-quan. Expression, Purification of Mortierella alpina Δ9 Desaturase and Characterization of Its Cytochrome b5 Domain[J]. China Biotechnology, 2017, 37(3): 43-50.
[13] XIA Qi-yu, LI Mei-ying, YANG Xiao-liang, XIAO Su-sheng, HE Ping-ping, GUO An-ping. Immunochromatography Test Strip and Its Applications in Detection of Genetically Modified Organisms[J]. China Biotechnology, 2017, 37(2): 101-110.
[14] XUE Ling, LIU Jiang-ning, ZHANG Yao, ZHANG Chun, WANG Qi, QIN Chuan, LIU Yong-dong, SU Zhi-guo. Affinity Purification of Enterovirus 71 Fused Multi-Epitope Protein Antigen and Assembling It as Virus-like Particles in Vitro[J]. China Biotechnology, 2016, 36(7): 34-40.
[15] MENG Guo-ji, DENG Yi-xi, LI Le, LUO Hao-hui, YU Yu-gen. Promotion in ProteinA Chromatography of WLB303 Monoclonal Antibody by Using Dual Flowrate to Load Sample[J]. China Biotechnology, 2016, 36(6): 65-75.