Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2020, Vol. 40 Issue (7): 1-8    DOI: 10.13523/j.cb.2006011
    
Serum Progesterone Level Detection for the Screening of Recipient Cattle for Cloned Embryo Transfer and Their Pregnancy Diagnosis
JIA Xiao1,3,QIU Jin1,3,SHU Juan1,2,3,LI Hua1,3,XI Shu-bin1,3,ZENG Yi-tao1,3,ZENG Fan-yi1,2,3,4,***()
1 Shanghai Institute of Medical Genetics,Children’s Hospital of Shanghai,Children’s Hospital Affiliated to Shanghai Jiaotong University,Shanghai 20040,China
2 Shanghai Tao Tao Transgenic Engineering Co., Ltd., Shanghai 201604,China
3 Key Laboratory of Embryo Molecular Biology,Ministry of Health,Shanghai Key Laboratory of Embryo and Reproduction Engineering,Shanghai 20040,China
4 Department of Histoembryology, Genetics & Development, Shanghai Jiaotong University College of Basic Medical Sciences, Shanghai 200025, China
Download: HTML   PDF(651KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: Progesterone (P4), as a reproductive hormone, changes regularly in the estrus cycle of mammals, and plays an essential role in the establishment and maintenance of pregnancy in cattle. This study through monitoring serum progesterone concentration in cattle, in addition to the routine manual estrus observation, screens for embryo transfer (ET) recipient cattle, as well as for the monitoring of reproductive status during the whole pregnancy of cattle upon Somatic Cell Nuclear Transfer (SCNT) experiments. Methods: Through the study of serum progesterone levels of natural-breeding cattle at different reproductive stages, the reference indexes of progesterone concentration at early estrus and during pregnancy were established. Based on these indexes, the recipient cattle suitable for embryo transfer were screened and selected by complementing manual estrus observation. At the same time, reconstructed blastocyst from SCNT cultured in vitro for seven days was transferred into the uterus of selected estrus-synchronized recipient cattle. The pregnancy state was monitored with serum progesterone level. Experimental results: (1) When using serum progesterone level to screen for SCNT embryo transfer recipient cattle, i.e. progesterone concentration at 0d (≤0.64nmol/L) and 5d (2-8nmol/L), more than 50% of pseudo-estrus cows can be excluded from the embryo transfer recipient list. (2) Birth rate from embryo transfer of cloned embryos through the progesterone monitoring is 7.1 fold higher than using the traditional monitoring method alone. Conclusion: The application of bovine serum progesterone monitoring can effectively improve the accuracy of cow reproductive cycle evaluation. It increases the effectiveness of suitable embryo transfer recipient cattle selection, as well as the accurate judgment of pregnancy status after SCNT embryo transfer in the recipient cattle. This practice can improve the utilization efficacy of recipient cattle selection, and the production efficiency of cloned cattle. It can be extended to other applications in the embryo engineering field as well as in the livestock production industry.



Key wordsProgesterone      Embryo transfer      Recipient cattle      SCNT/Cloned cattle     
Received: 08 June 2020      Published: 13 August 2020
ZTFLH:  Q819  
Corresponding Authors: Fan-yi ZENG     E-mail: fzeng@vip.163.com
Cite this article:

JIA Xiao,QIU Jin,SHU Juan,LI Hua,XI Shu-bin,ZENG Yi-tao,ZENG Fan-yi. Serum Progesterone Level Detection for the Screening of Recipient Cattle for Cloned Embryo Transfer and Their Pregnancy Diagnosis. China Biotechnology, 2020, 40(7): 1-8.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2006011     OR     https://manu60.magtech.com.cn/biotech/Y2020/V40/I7/1

Fig.1 Changes of serum progesterone concentration in estrus cycle of nonpregnant cows (n=16)
Fig.2 Changes of serum progesterone concentration in breeding cattle during pregnancy (n=13)
Fig.3 Serum progesterone levels at different time points in pregnancy terminated cattle (Pregnant cattle n=10)
观察发情数(头) 孕酮判定发情数(头) 符合率(%)
247 120 48.6%
Table 1 Comparison of estrus cattle status using two methods
Fig.4 Summary of progesterone concentration in recipient cattle during pregnancy (n=22)
分组 观察发情数(头) 受体数(头) 20天妊娠数(妊娠率) 40天妊娠数(妊娠率) 60天妊娠数(妊娠率) 90天妊娠数(妊娠率) 产犊数(产犊率)
对照组 364 364 295(81.04%)a 205(56.32%)a 136(37.36%)a 49(13.46%)a 6(1.65%)a
实验组 274 111 76(68.74%)b 52(46.85%)a 37(33.33%)a 19(17.12%)a 13(11.71%)b
Table 2 Comparison of pregnancy rate of SCNT recipient cattle at various time points
[1]   李权武. 家畜外周血浆孕酮水平及其在兽医产科上的应用(续). 国外兽医学:畜禽疾病, 1980,3:5-8.
[1]   Li Q W. The level of progesterone in peripheral plasma of domestic animals and its application in veterinary obstetrics (continuation). Journal of Foreign Veterinary Medicine:Livestock and Poultry Disease, 1980,3:5-8.
[2]   Rosenberg M, Herz Z, Davidson M, et al. Seasonal variations in post-partum plasma progesterone levels and conception in primiparous and multiparous dairy cows. J Reprod Fertil, 1977,51(2):363-367.
doi: 10.1530/jrf.0.0510363 pmid: 563452
[3]   张庆坤, 杨会平. 提高牛胚胎移植受胎率的关键环节. 中国草食动物, 2007,27(2):64-65.
[3]   Zhang Q K, Yang H P. Critical steps to improve the conception rate of bovine embryo transfer. China Herbivores, 2007,27(2):64-65.
[4]   Polejaeva I A, Broek D M, Walker S C, et al. Longitudinal study of reproductive performance of female cattle produced by somatic cell nuclear transfer. PLoS One, 2013,8(12):e84283.
doi: 10.1371/journal.pone.0084283 pmid: 24391930
[5]   Abreu F M, Coutinho da Silva M A, Cruppe L H, et al. Role of progesterone concentrations during early follicular development in beef cattle: I. characteristics of LH secretion and oocyte quality. Anim Reprod Sci, 2018,9(196):59-68.
[6]   Abreu F M, Geary T W, Coutinho da Silva M A, et al. Role of progesterone concentrations during early follicular development in beef cattle: II. ovulatory follicle growth and pregnancy rates. Anim Reprod Sci, 2018,9(196):69-76.
[7]   Forde N, McGettigan PA, Mehta JP, et al. Proteomic analysis of uterine fluid during the pre-implantation period of pregnancy in cattle. Reproduction, 2014,147(5):575-587.
doi: 10.1530/REP-13-0010 pmid: 24478148
[8]   Pat L, Niamh F, Thomas S. Role of progesterone in embryo development in cattle. Reprod Fertil Dev, 2016,28(1-2):66-74.
doi: 10.1071/RD15326 pmid: 27062875
[9]   Ayad A, Sousa N M, Sulon J, et al. Influence of progesterone concentrations on secretory functions of trophoblast and pituitary during the first trimester of pregnancy in the dairy cattle. Theriogenology, 2007,67(9):1503-1514.
doi: 10.1016/j.theriogenology.2007.03.010 pmid: 17459464
[10]   Forde N, Beltman M E, Duffy G B, et al. Changes in the endometrial transcriptome during the bovine estrous cycle: effect of low circulating progesterone and consequences for conceptus elongation. Biol Reprod, 2011,84(2):266-278.
doi: 10.1095/biolreprod.110.085910 pmid: 20881316
[11]   Blavy P, Friggens N C, Nielsen K R, et al. Estimating probability of insemination success using milk progesterone measurements. J Dairy Sci, 2018,101(2):1648-1660.
doi: 10.3168/jds.2016-12453 pmid: 29174142
[12]   Parr M H, Mullen M P, Crowe M A, et al. Relationship between pregnancy per artificial insemination and early luteal concentrations of progesterone and establishment of repeatability estimates for these traits in Holstein-Friesian heifers. Dairy Sci, 2012,95(5):2390-2396.
doi: 10.3168/jds.2011-4498
[13]   Forde N, Mehta J P, Minten M, et al. Effects of low progesterone on the endometrial transcriptome in cattle. Biol Reprod, 2012. 87(5):124.
pmid: 23018184
[14]   Clemente M, Fuente J L, Fair T, et al. Progesterone and conceptus elongation in cattle: a direct effect on the embryo or an indirect effect via the endometrium. Reproduction, 2009,138(3):507-517.
doi: 10.1530/REP-09-0152 pmid: 19556439
[15]   Henricks D M, Dickey J F, Niswender G D. Serum luteinizing hormone and plasma progesterone levels during the estrous cycle and early pregnancy in cows. Biology of Reproduction, 1970,2(3):346-351.
doi: 10.1095/biolreprod2.3.346 pmid: 5527833
[16]   Holtz W, Niggemeyer H. Reliable identification of pregnant dairy cows by double milk progesterone analysis. Livestock Science, 2019,7(228):38-41.
[17]   Zhang C, Murphy B D. Progesterone is critical for the development of mouse embryos. Endocrine, 2014,46(3):615-623.
doi: 10.1007/s12020-013-0140-7 pmid: 24366645
[18]   Ferguson C E, Kesler D J, Godke R A. Progesterone enhances in vitro development of bovine embryos. Theriogenology, 2012,77(1):108-114.
pmid: 21872313
[19]   Muhammad S, Zaeem S, Muhammad S, et al. Effect of plasma progesterone on oocyte recovery, oocyte quality, and early in vitro developmental competence of embryos in Bos indicus dairy cows. Anim Reprod Sci, 2019,3(202):80-86.
[20]   宗哲英, 王帅, 苏力德, 等. 奶牛发情行为的监测研究现状及进展. 畜牧与兽医, 2018,50(2):147-150.
[20]   Zong Z Y, Wang S, Su L D, et al. A review of research on monitoring the oestrus behavior of dairy cows. Animal Husbandry & Veterinary Medicine, 2018,50(2):147-150.
[21]   Wilmut I, Schnieke A E, McWhir J, et al. Viable offspring derived from fetal and adult mammalian cells. Nature, 1997,385(6619):810-813.
pmid: 9039911
[22]   Farin P W, Piedrahita J A, Farin C E. Errors in development of fetuses and placentas from in vitro produced bovine embryos. Theriogenology, 2006,65(1):178-191.
pmid: 16266745
[23]   Yang X Y, Li H, Ma Q W, et al. Improved efficiency of bovine cloning by autologous somatic cell nuclear transfer. Reproduction, 2006,132(5):733-739.
doi: 10.1530/rep.1.01118 pmid: 17071774
[24]   Akagi S, Geshi M, Nagai T. Recent progress in bovine somatic cell nuclear transfer. Anim Sci J, 2013,84(3):191-199.
doi: 10.1111/asj.12035 pmid: 23480698
[25]   Ha A,N, Fakruzzaman M, Lee K,L, et al. Effects of co-culture of cumulus oocyte complexes with denuded oocytes during in vitro maturation on the developmental competence of cloned bovine embryos. Reprod Domest Anim. 2015,50(2):292-298.
doi: 10.1111/rda.12487 pmid: 25605137
[26]   Zhang Y, Xiong X R, Wang L J, et al. Different preferences of IVF and SCNT bovine embryos for culture media. Zygote, 2014,22(1):1-9.
doi: 10.1017/S0967199412000184
[27]   张鹏. 体细胞核移植技术的研究进展. 中国医药科学, 2016,6(5):40-43.
[27]   Zhang P. Research progress of somatic cell nuclear transfer technique. China Medicine and Pharmacy, 2016,6(5):40-43.
[28]   Biase F H, Rabel C, Guillomotet M, et al. Massive dysregulation of genes involved in cell signaling and placental development in cloned cattle conceptus and maternal endometrium. PNAS, 2016,113(51):14492-14501.
doi: 10.1073/pnas.1520945114 pmid: 27940919
[29]   Pope W F. Uterine asynchrony: a cause of embryonic loss. Biol Reprod, 1988,39(5):999-1003.
doi: 10.1095/biolreprod39.5.999 pmid: 3064819
[30]   Knott J G, Poothapillai K, Wu H, et al. Porcine sperm factor supports activation and development of bovine nuclear transfer embryos. Biol Reprod, 2002,66(4):1095-1103.
doi: 10.1095/biolreprod66.4.1095 pmid: 11906930
[31]   赵磊文, 伏静, 管鹏飞, 等. 胚胎移植时机对牛体细胞克隆胚胎妊娠率的影响. 上海交通大学学报(农业科学版), 2008,26(2):96-100.
[31]   Zhao L W, Fu J, Guan P F, et al. Effect of implantation time on the pregnancy of bovine somatic nuclear transfer embryos. Journal of Shanghai Jiaotong University (Agricultural Science), 2008,26(2):96-100.
[32]   伏静, 赵磊文, 管鹏飞, 等. 共培养体系中滋养层细胞对牛核移植胚胎早期发育的影响. 上海交通大学学报(农业科学版), 2007,25(6):519-524.
[32]   Fu J, Zhao L W, Guan P F, et al. Effect of feeder cells in co-culture system on in vitro development of bovine nuclear transfer embryos. Journal of Shanghai Jiaotong University(Agricultural Science), 2007,25(6):519-524.
[33]   陈海燕, 傅衍. 中国荷斯坦牛发情周期中孕酮、雌二醇含量的变化规律. 上海交通大学学报(农业科学版), 2005,23(2):122-124.
[33]   Chen H Y, Fu Y. Change of contents of progesterone and oestradiol in the milk of Chinese Holstein Cow during oestrous cycle. Journal of Shanghai Jiaotong University (Agricultural Science), 2005,23(2):122-124.
[34]   丁伟良. 试论牛繁殖技术性不育的原因及改进策略. 黑龙江动物繁殖, 2017,25(6):47-48.
[34]   Ding W L. Causes and improvement strategies of technical sterility in cattle breeding. Heilongjiang Journal of Animal Reproduction. 2017,25(6):47-48.
[35]   黄承俊, 张文军, 李宁. 牛羊胚胎移植研究进展. 现代畜牧兽医, 2019,5:51-58.
[35]   Huang C J, Zhang W J, Li N. Studies of embryo transfer technology inlivestock. Modern journal of Animal Husbandry and Veterinary Medicine. 2019,5:51-58.
[1] . [J]. China Biotechnology, 2021, 41(12): 1-3.
[2] WU Han-rong,WANG Ying,HUANG Ying-ming,LI Dong-xue,LI Zhi-fei,FANG Zi-han,FAN Lin. Promote the Innovation and Transformation of Biotechnology by Base Platform[J]. China Biotechnology, 2021, 41(12): 141-147.
[3] YIN Ze-chao,WANG Xiao-fang,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Advances on Genetic Research and Mechanism Analysis on Maize Resistance to Ear Rot[J]. China Biotechnology, 2021, 41(12): 103-115.
[4] LENG Yan,SUN Kang-tai,LIU Qian-qian,PU A-qing,LI Xiang,WAN Xiang-yuan,WEI Xun. Trends of Global Gene-edited Crops Supervision[J]. China Biotechnology, 2021, 41(12): 24-29.
[5] HE Wei,ZHU Lei,LIU Xin-ze,AN Xue-li,WAN Xiang-yuan. Research Progress on Maize Genetic Transformation and Commercial Development of Transgenic Maize[J]. China Biotechnology, 2021, 41(12): 13-23.
[6] YANG Meng-bing,JIANG Yi-lin,ZHU Lei,AN Xue-li,WAN Xiang-yuan. CRISPR/Cas Plant Genome Editing Systems and Their Applications in Maize[J]. China Biotechnology, 2021, 41(12): 4-12.
[7] YIN Fang-bing,WANG Cheng,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Progress on Dissecting Genetic Architecture and Formation Mechanism of Maize Ear Traits[J]. China Biotechnology, 2021, 41(12): 30-46.
[8] QIN Wen-xuan,LIU Xin,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Progress on Genetic Analysis and Molecular Dissection on Maize Leaf Angle Traits[J]. China Biotechnology, 2021, 41(12): 74-87.
[9] WANG Rui-pu,DONG Zhen-ying,GAO Yue-xin,LONG Yan,WAN Xiang-yuan. Research Progress on Genetic Structure and Regulation Mechanism on Starch Content in Maize Kernel[J]. China Biotechnology, 2021, 41(12): 47-60.
[10] MA Ya-jie,GAO Yue-xin,LI Yi-ping,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Progress on Genetic Analysis and Molecular Dissection on Maize Plant Height and Ear Height[J]. China Biotechnology, 2021, 41(12): 61-73.
[11] WANG Yan-bo,WEI Jia,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Research Advances on Genetic Structure and Molecular Mechanism Underlying the Formation of Tassel Traits in Maize[J]. China Biotechnology, 2021, 41(12): 88-102.
[12] MAO Kai-yun,LI Rong,LI Dan-dan,ZHAO Ruo-chun,FAN Yue-lei,JIANG Hong-bo. Analysis of the Current Status of Global Bispecific Antibody Development[J]. China Biotechnology, 2021, 41(11): 110-118.
[13] WU Han-rong,WANG Ying,YANG Li,GE Yao,FAN Ling. Current Situation and Development Suggestions of China’s Biotechnology Base Platform[J]. China Biotechnology, 2021, 41(11): 119-123.
[14] LIU Tian-yi,FENG Hui,SALSABEEL Yousuf,XIE Ling-li,MIAO Xiang-yang. Research Progress of lncRNA in Animal Fat Deposition[J]. China Biotechnology, 2021, 41(11): 82-88.
[15] XUE Zhi-yong,DAI Hong-sheng,ZHANG Xian-yuan,SUN Yan-ying,HUANG Zhi-wei. Effects of Vitreoscilla Hemoglobin Gene on Growth and Intracellular Oxidation State of Saccharomyces cerevisiae[J]. China Biotechnology, 2021, 41(11): 32-39.