Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2012, Vol. 32 Issue (12): 8-12    DOI:
    
Effects of c-fos Down-regulation via shRNA on P-gp-mediated Multidrug Resistance in Human Breast Cancer MCF-7/ADR Cells
SHI Rui-zan, HU Xiao-ling, FAN Yan-ying
Shanxi Medical University, Taiyuan 030001, China
Download: HTML   PDF(530KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  Multidrug resistance (MDR) is the main reason of chemotherapy failure. The overexpression of P-glycoprotein (P-gp), encoded by the multidrug resistance (mdr1) gene, is thought to be the major cause of MDR phenotype. Since much attention has been paid to the role of proto-oncogene c-fos in MDR, adriamycin (ADR)-selected resistant breast cancer cells (MCF-7/ADR) with mdr1/P-gp overexpression and parental drug-sensitive cells (MCF-7) were chosen to analyze the role of c-fos in P-gp-mediated MDR. Elevated c-fos expression is observed in MCF-7/ADR compared to MCF-7 cells. Down-regulation of c-fos expression via shRNA resulted in sensitization of MCF-7/ADR cells to ADR and decreased the expression of mdr1/P-gp and efflux function of P-gp. Based on these results, c-fos may represent a potential molecular target for resistant cancer therapy, and suppressing c-fos gene expression may therefore be an effective means for targeted molecular therapy.

Key wordsc-fos      Multidrug resistance (MDR)      P-glycoprotein (P-gp)      Targeted molecular therapy     
Received: 29 August 2012      Published: 25 December 2012
ZTFLH:  Q819  
Cite this article:

SHI Rui-zan, HU Xiao-ling, FAN Yan-ying. Effects of c-fos Down-regulation via shRNA on P-gp-mediated Multidrug Resistance in Human Breast Cancer MCF-7/ADR Cells. China Biotechnology, 2012, 32(12): 8-12.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2012/V32/I12/8

[1] Jema A,Seige R,Xu J,et al. Cancer statistic. Cancer J Clin, 2010, 60(5): 277-300.
[2] Chen K G, Sikic B I. Molecular pathways: regulation and therapeutic implications of multidrug resistance. Clin Cancer Res, 2012, 18(7): 1863-1869.
[3] Schiff R, Reddy P, Ahotupa M, et al. Oxidative stress and AP-1 activity in tamoxifen-resistant breast tumors in vivo. Natl Cancer Inst, 2000, 92(23): 1926-1934.
[4] 景志杰, 刘田福, 师锐赞. 靶向人原癌基因c-fos的特异性shRNA表达载体的构建及鉴定. 中国生物制品学杂志, 2011, 24(6): 682-684. Jing Z J, Liu T F, Shi R Z. Construction and identification of short hairpin RNA expression vector targeting to human proto-oncogene c-fos. Chin J Biologicals, 2011, 24(6): 682-684.
[5] Wang H, Wang X, Li Y, et al. The proteasome inhibitor bortezomib reverses P-glycoprotein-mediated leukemia multi-drug resistance through the NF-kappaB pathway. Pharmazie, 2012, 67(2): 187-192.
[6] Liu Y, Ludes-Meyers J, Zhang Y, et al. Inhibition of AP-1 transcription factor causes blockade of multiple signal transduction pathways and inhibits breast cancer growth. Oncogene, 2002,21(50):7680-7689.
[7] Vendrell J A, Robertson K E, Ravel P, et al. A candidate molecular signature associated with tamoxifen failure in primary breast cancer. Breast Cancer Res, 2008, 10(5): 88.
[8] Arteaga C L, Holt J T. Tissue-targeted antisense c-fos retroviral vector inhibits established breast cancer xenografts in nude mice. Cancer Res, 1996, 56(5): 1098-1103.
[9] Muscella A, Urso L, Calabriso N, et al. Anti-apoptotic effects of protein kinase C-delta and c-fos in cisplatin-treated thyroid cells. Br J Pharmacol, 2009, 156(5): 751-763.
[10] 师锐赞, 胡晓玲, 彭洪薇, 等. 靛玉红衍生物PHⅡ-7通过抑制c-fos表达抗乳腺癌耐药株MCF-7/ADR增殖. 中药药理与临床, 2012, 28(2): 39-42. Shi R Z, Hu X L, Peng H W, et al. Indirubin derivative PHⅡ-7 suppresses the proliferation of resistant human breast cancer MCF-7/ADR cells via inhibiting c-fos expression. Pharmacology and Clinics of Chinese Materia Medica, 2012, 28(2): 39-42.
[11] Cen J, Zhu Y L, Yang Y, et al.Effects of the multidrug resistance modulator HZ08 on the apoptosis pathway in human chronic leukaemia cell line K562/A02. Arzneimittelforschung, 2011,61(11):622-630.
[12] Johnson K A, Brown P H. Drug development for cancer chemoprevention: focus on molecular targets. Semin Oncol, 2010, 37(4): 345-358.
[1] . [J]. China Biotechnology, 2021, 41(12): 1-3.
[2] WU Han-rong,WANG Ying,HUANG Ying-ming,LI Dong-xue,LI Zhi-fei,FANG Zi-han,FAN Lin. Promote the Innovation and Transformation of Biotechnology by Base Platform[J]. China Biotechnology, 2021, 41(12): 141-147.
[3] YIN Ze-chao,WANG Xiao-fang,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Advances on Genetic Research and Mechanism Analysis on Maize Resistance to Ear Rot[J]. China Biotechnology, 2021, 41(12): 103-115.
[4] LENG Yan,SUN Kang-tai,LIU Qian-qian,PU A-qing,LI Xiang,WAN Xiang-yuan,WEI Xun. Trends of Global Gene-edited Crops Supervision[J]. China Biotechnology, 2021, 41(12): 24-29.
[5] HE Wei,ZHU Lei,LIU Xin-ze,AN Xue-li,WAN Xiang-yuan. Research Progress on Maize Genetic Transformation and Commercial Development of Transgenic Maize[J]. China Biotechnology, 2021, 41(12): 13-23.
[6] YANG Meng-bing,JIANG Yi-lin,ZHU Lei,AN Xue-li,WAN Xiang-yuan. CRISPR/Cas Plant Genome Editing Systems and Their Applications in Maize[J]. China Biotechnology, 2021, 41(12): 4-12.
[7] YIN Fang-bing,WANG Cheng,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Progress on Dissecting Genetic Architecture and Formation Mechanism of Maize Ear Traits[J]. China Biotechnology, 2021, 41(12): 30-46.
[8] QIN Wen-xuan,LIU Xin,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Progress on Genetic Analysis and Molecular Dissection on Maize Leaf Angle Traits[J]. China Biotechnology, 2021, 41(12): 74-87.
[9] WANG Rui-pu,DONG Zhen-ying,GAO Yue-xin,LONG Yan,WAN Xiang-yuan. Research Progress on Genetic Structure and Regulation Mechanism on Starch Content in Maize Kernel[J]. China Biotechnology, 2021, 41(12): 47-60.
[10] MA Ya-jie,GAO Yue-xin,LI Yi-ping,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Progress on Genetic Analysis and Molecular Dissection on Maize Plant Height and Ear Height[J]. China Biotechnology, 2021, 41(12): 61-73.
[11] WANG Yan-bo,WEI Jia,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Research Advances on Genetic Structure and Molecular Mechanism Underlying the Formation of Tassel Traits in Maize[J]. China Biotechnology, 2021, 41(12): 88-102.
[12] MAO Kai-yun,LI Rong,LI Dan-dan,ZHAO Ruo-chun,FAN Yue-lei,JIANG Hong-bo. Analysis of the Current Status of Global Bispecific Antibody Development[J]. China Biotechnology, 2021, 41(11): 110-118.
[13] WU Han-rong,WANG Ying,YANG Li,GE Yao,FAN Ling. Current Situation and Development Suggestions of China’s Biotechnology Base Platform[J]. China Biotechnology, 2021, 41(11): 119-123.
[14] LIU Tian-yi,FENG Hui,SALSABEEL Yousuf,XIE Ling-li,MIAO Xiang-yang. Research Progress of lncRNA in Animal Fat Deposition[J]. China Biotechnology, 2021, 41(11): 82-88.
[15] XUE Zhi-yong,DAI Hong-sheng,ZHANG Xian-yuan,SUN Yan-ying,HUANG Zhi-wei. Effects of Vitreoscilla Hemoglobin Gene on Growth and Intracellular Oxidation State of Saccharomyces cerevisiae[J]. China Biotechnology, 2021, 41(11): 32-39.