Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2022, Vol. 42 Issue (5): 58-68    DOI: 10.13523/j.cb.2201011
    
Engineered Rhodosporidium toruloides Strains Capable of Biosynthesizing a Non-natural Cofactor
LIANG Shi-yu1,2,WAN Li1,2,GUO Xiao-jia1,WANG Xue-ying1,LV Li-ting1,HU Ying-han1,2,ZHAO Zong-bao1,**()
1 Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
Download: HTML   PDF(2634KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Nicotinamide adenine dinucleotide (NAD) and its reduced form are universal redox cofactors involved in many cellular reactions. Cellular NAD level disturbance routinely leads to unexpected biological effects, and thus it is difficult to regulate a redox pathway-of-interest by manipulating NAD level. Recently, a non-natural cofactor nicotinamide cytosine dinucleotide (NCD) was devised and orthogonal redox systems based on NCD were developed, providing a new strategy for regulating cellular metabolism. To achieve more efficient regulation of lipid metabolism of the oleaginous yeast Rhodosporidium toruloides, a codon-optimized gene NCDS encoding NCD synthetase (NcdS) was integrated into the genome of R. toruloides by an Agrobacterium-mediated transformation method. Engineered strains were found with proper expression of NcdS and enzyme activity of the cell lysates reached 8.1×10-3 U/OD600 nm based on a coupled colorimetric assay. Successful biosynthesis of NCD by the cell lysates was further verified by high-performance liquid chromatography and ultra-high-resolution mass spectrometry. Intracellular NCD levels up to 41.6 μmol/L were realized upon feeding 5.0 mmol/L of nicotinamide riboside to the media used for cell culture. Results also showed that the expression of NcdS had little detrimental effect on lipid production capacity. It is expected that lipid metabolism may be reconstructed and regulated by NCD upon further expression of other NCD-preferred enzymes in R. toruloides.



Key wordsRhodosporidium toruloides      Non-natural cofactor      Nicotinamide cytosine dinucleotide(NCD)      Synthetic biology      Redox metabolism     
Received: 10 January 2022      Published: 17 June 2022
ZTFLH:  Q819  
Corresponding Authors: Zong-bao ZHAO     E-mail: zhaozb@dicp.ac.cn
Cite this article:

LIANG Shi-yu,WAN Li,GUO Xiao-jia,WANG Xue-ying,LV Li-ting,HU Ying-han,ZHAO Zong-bao. Engineered Rhodosporidium toruloides Strains Capable of Biosynthesizing a Non-natural Cofactor. China Biotechnology, 2022, 42(5): 58-68.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2201011     OR     https://manu60.magtech.com.cn/biotech/Y2022/V42/I5/58

Fig.1 The reaction catalyzed by NCD synthetase CTP: Cytidine triphosphate; NMN: Nicotinamide mononucleotide; NCD: Nicotinamide cytosine dinucleotide; PPi: Pyrophosphoric acid
菌株/质粒 信息 来源或文献
菌株
Escherichia coli DH10B F-, endA1, recA1, galU, galK, deoR, nupG, rpsL, ΔlacX74 Φ80lacZΔM15, araD139, Δ(ara,leu)7697, mcrA, λ-, Δ(mrr-hsdRMS-mcrBC) Invitrogen
Agrobacterium tumefaciens AGL1 AGL0 recAbla pTiBo542ΔT Mop+ CbR [27]
Rhodosporidium toruloides NP11 MAT A1 [25]
DH10B-NCDS DH10B/PZPK-PPGK-NCDS-P2A-HYG-Thsp This study
AGL1-NCDS AGL1/PZPK-PPGK-NCDS-P2A-HYG-Thsp This study
NP11-NCDS1~5 NP11/PPGK-NCDS-P2A-HYG-Thsp1~5 This study
质粒
PZPK KanR [28]
pUC-kan-NcdS-2 KanR [12]
PZPK-PPGK-MNP-P2A-HYG-Thsp KanR [29]
pUC57-NCDS KanR This study
PZPK-PPGK-NCDS-P2A-HYG-Thsp PPGK-NCDS-P2A-HYG-Thsp in PZPK This study
Table 1 Strains and plasmids used in this study
引物 序列(5' →3')
PGK-NCDS-F GCAGGTTCACAGCAACTCACCCGTCCAACTCCCACCCTCCCCCGTGCAGCCCACCATGAAGTCGCTCCAGGCTCTCTTC
NCDS(his)-P2A-R
CAGGGTTCTCTTCGACGTCGCCAGCCTGCTTGAGGAGCGAGAAGTTGGTAGCGCCCGAGCCGTGGTGATGATGGTGG
TGGCGGTAG
PGK-F CGCATCGTTGAACTTGCACTTC
HYG-R CGAGACCGAGTCGAACTTTTCGATG
NCDS-NF GCCCACCATGAAGTCGCTC
NCDS-NR GGTAGAGGCCCTGCTGGTTG
GAPDH-F GGTATCGCCCTCAACGACA
GAPDH-R GACGAGCAAGTCCACGACAC
Table 2 Primers used in this study
Fig.2 PCR verification of R. toruloides transformants (a) Schematic of NCDS construct (b) Pretreatment result, GAPDH amplified by the primers GAPDH-F and GAPDH-R (c) PCR result of NCDS amplified by the primers NCDS-NF and NCDS-NR Lane M: DNA marker; Lane 1-5: Represent 5 individual transformants, NP11-NCDS1-5; Lane -: R. toruloides NP11; Lane +: The plasmid PZPK-PPGK-NCDS-P2A-HYG-Thsp; Lane H2O: Distilled water
Fig.3 Detection of NcdS proteins in R. toruloides transformants by Western blot Lane M: Protein marker; Lane 1-5: Total protein sample from 5 individual transformants, NP11-NCDS1-5; Lane -: Total protein sample from R. toruloides NP11; Molecular weight: NcdS; 25.3 kDa
Fig.4 Principles and results of crude enzyme activity determination (a) Principle of the coupled colorimetric assay and activity determination (b) Crude enzyme activity of the transformants. Strain 1-5: Represent 5 individual transformants, NP11-NcdS1-5. Error bars represent means ± standard deviation. Significant differences of engineered strains and NP11 were calculated using the t test (* P<0.05; ** P<0.01; *** P<0.001)
Fig.5 Crude enzyme catalyzes the synthesis of NCD in vitro (a) HPLC profiles of NCD and crude enzyme catalytic system (b) The MS spectra of crude enzyme catalytic system. MS detection mode: Negative ion mode. NCD: Experimental monoisotopic mass, 638.091 0; Calculated molecular mass, 638.090 6
Fig.6 Determination of intracellular NCD in engineered strains (a) NCD concentrations in engineered strains. Strain 1-5: Represent 5 individual transformants, NP11-NcdS1-5. Error bars represent means ± standard deviation (b) The MS spectra of intracellular NCD(H) in NP11-NCDS1 and NP11. MS detection mode: Negative ion mode. Experimental monoisotopic mass: NCD, 638.088 6; NCDH, 640.103 8. Calculated molecular mass: NCD, 638.090 6; NCDH, 640.106 3
Strains Dry cell weight /(g/L) Total lipid /(g/L) Lipid content /% Lipid yield /(g/g sugar)
NP11-NCDS1 12.4 ± 0.4 5.7 ± 0.3* 45.7 ± 2.2* 0.119 ± 0.007
NP11-NCDS2 11.7 ± 0.2 5.3 ± 0.2 45.6 ± 1.8* 0.113 ± 0.005
NP11-NCDS3 8.8 ± 0.2** 3.2 ± 0.2* 36.5 ± 1.6* 0.078 ± 0.003*
NP11-NCDS4 12.0 ± 0.3 5.3 ± 0.3 44.3 ± 1.6 0.113 ± 0.005
NP11-NCDS5 12.4 ± 0.5 5.7 ± 0.3* 46.2 ± 0.4* 0.121 ± 0.005
NP11 11.8 ± 0.1 5.0 ± 0.1 42.0 ± 1.3 0.106 ± 0.001
Table 3 Lipid production results by R. toruloides strains
[1]   Wang M, Chen B Q, Fang Y M, et al. Cofactor engineering for more efficient production of chemicals and biofuels. Biotechnology Advances, 2017, 35(8): 1032-1039.
doi: 10.1016/j.biotechadv.2017.09.008
[2]   Amjad S, Nisar S, Bhat A A, et al. Role of NAD+ in regulating cellular and metabolic signaling pathways. Molecular Metabolism, 2021, 49: 101195.
doi: 10.1016/j.molmet.2021.101195
[3]   Xiao W S, Wang R S, Handy D E, et al. NAD(H) and NADP(H) redox couples and cellular energy metabolism. Antioxidants & Redox Signaling, 2018, 28(3): 251-272.
[4]   Martins-Santana L, Nora L C, Sanches-Medeiros A, et al. Systems and synthetic biology approaches to engineer fungi for fine chemical production. Frontiers in Bioengineering and Biotechnology, 2018, 6: 117.
doi: 10.3389/fbioe.2018.00117 pmid: 30338257
[5]   Xu X H, Liu Y F, Du G C, et al. Microbial chassis development for natural product biosynthesis. Trends in Biotechnology, 2020, 38(7): 779-796.
doi: 10.1016/j.tibtech.2020.01.002
[6]   Li C, Swofford C A, Sinskey A J. Modular engineering for microbial production of carotenoids. Metabolic Engineering Communications, 2020, 10: e00118.
doi: 10.1016/j.mec.2019.e00118
[7]   Holm A K, Blank L M, Oldiges M, et al. Metabolic and transcriptional response to cofactor perturbations in Escherichia coli. Journal of Biological Chemistry, 2010, 285(23): 17498-17506.
doi: 10.1074/jbc.M109.095570
[8]   Rovira A R, Fin A, Tor Y. Emissive synthetic cofactors: an isomorphic, isofunctional, and responsive NAD+ analogue. Journal of the American Chemical Society, 2017, 139(44): 15556-15559.
doi: 10.1021/jacs.7b05852
[9]   Hallé F, Fin A, Rovira A R, et al. Emissive synthetic cofactors: enzymatic interconversions of tzA analogues of ATP, NAD+, NADH, NADP+, and NADPH. Angewandte Chemie (International Ed in English), 2018, 57(4): 1087-1090.
doi: 10.1002/anie.201711935
[10]   Dai Z F, Zhang X N, Nasertorabi F, et al. Facile chemoenzymatic synthesis of a novel stable mimic of NAD+. Chemical Science, 2018, 9(44): 8337-8342.
doi: 10.1039/C8SC03899F
[11]   Ji D B, Wang L, Hou S H, et al. Creation of bioorthogonal redox systems depending on nicotinamide flucytosine dinucleotide. Journal of the American Chemical Society, 2011, 133(51): 20857-20862.
doi: 10.1021/ja2074032
[12]   Wang X, Feng Y, Guo X, et al. Creating enzymes and self-sufficient cells for biosynthesis of the non-natural cofactor nicotinamide cytosine dinucleotide. Nature Communications, 2021, 12: 2116.
doi: 10.1038/s41467-021-22357-z
[13]   Wang L, Ji D B, Liu Y X, et al. Synthetic cofactor-linked metabolic circuits for selective energy transfer. ACS Catalysis, 2017, 7(3): 1977-1983.
doi: 10.1021/acscatal.6b03579
[14]   Liu Y X, Feng Y B, Wang L, et al. Structural insights into phosphite dehydrogenase variants favoring a non-natural redox cofactor. ACS Catalysis, 2019, 9(3): 1883-1887.
doi: 10.1021/acscatal.8b04822
[15]   Guo X J, Liu Y X, Wang Q, et al. Non-natural cofactor and formate-driven reductive carboxylation of pyruvate. Angewandte Chemie (International Ed in English), 2020, 59(8): 3143-3146.
doi: 10.1002/anie.201915303
[16]   Liu Y X, Li Q, Wang L, et al. Engineering d-lactate dehydrogenase to favor an non-natural cofactor nicotinamide cytosine dinucleotide. ChemBioChem, 2020, 21(14): 1972-1975.
doi: 10.1002/cbic.201900766
[17]   王俊婷, 郭潇佳, 李青, 等. 创制非天然辅酶偏好型甲醇脱氢酶. 合成生物学, 2021, 2(4): 651-661.
[17]   Wang J T, Guo X J, Li Q, et al. Creation of non-natural cofactor-dependent methanol dehydrogenase. Synthetic Biology Journal, 2021, 2(4): 651-661.
[18]   Park Y K, Nicaud J M, Ledesma-Amaro R. The engineering potential of Rhodosporidium toruloides as a workhorse for biotechnological applications. Trends in Biotechnology, 2018, 36(3): 304-317.
doi: 10.1016/j.tibtech.2017.10.013
[19]   Liu Z J, Fels M, Dragone G, et al. Effects of inhibitory compounds derived from lignocellulosic biomass on the growth of the wild-type and evolved oleaginous yeast Rhodosporidium toruloides. Industrial Crops and Products, 2021, 170: 113799.
doi: 10.1016/j.indcrop.2021.113799
[20]   Li Y H, Zhao Z B, Bai F W. High-density cultivation of oleaginous yeast Rhodosporidium toruloides Y4 in fed-batch culture. Enzyme and Microbial Technology, 2007, 41(3): 312-317.
doi: 10.1016/j.enzmictec.2007.02.008
[21]   Wu S G, Zhao X, Shen H W, et al. Microbial lipid production by Rhodosporidium toruloides under sulfate-limited conditions. Bioresource Technology, 2011, 102(2): 1803-1807.
doi: 10.1016/j.biortech.2010.09.033
[22]   Wu S G, Hu C M, Jin G J, et al. Phosphate-limitation mediated lipid production by Rhodosporidium toruloides. Bioresource Technology, 2010, 101(15): 6124-6129.
doi: 10.1016/j.biortech.2010.02.111
[23]   Zhang Y, Peng J, Zhao H M, et al. Engineering oleaginous yeast Rhodotorula toruloides for overproduction of fatty acid ethyl esters. Biotechnology for Biofuels, 2021, 14(1): 115.
doi: 10.1186/s13068-021-01965-3 pmid: 33964988
[24]   Ratledge C, Wynn J P. The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Advances in Applied Microbiology, 2002, 51: 1-51.
pmid: 12236054
[25]   Zhu Z W, Zhang S F, Liu H W, et al. A multi-omic map of the lipid-producing yeast Rhodosporidium toruloides. Nature Communications, 2012, 3: 1112.
doi: 10.1038/ncomms2112
[26]   Wan L, Wang X Y, Hu Y H, et al. Gram-scale biocatalytic preparation of the non-natural cofactor nicotinamide cytosine dinucleotide. Tetrahedron Letters, 2022, 88: 153568.
doi: 10.1016/j.tetlet.2021.153568
[27]   Lazo G R, Stein P A, Ludwig R A. A DNA transformation-competent Arabidopsis genomic library in agrobacterium. Bio/Technology, 1991, 9 (10): 963-967.
doi: 10.1038/nbt1091-963
[28]   Lin X P, Wang Y N, Zhang S F, et al. Functional integration of multiple genes into the genome of the oleaginous yeast Rhodosporidium toruloides. FEMS Yeast Research, 2014, 14(4): 547-555.
doi: 10.1111/1567-1364.12140
[29]   Lyu L T, Chu Y D, Zhang S F, et al. Engineering the oleaginous yeast Rhodosporidium toruloides for improved resistance against inhibitors in biomass hydrolysates. Frontiers in Bioengineering and Biotechnology, 2021, 9: 768934.
doi: 10.3389/fbioe.2021.768934
[30]   张琦, 焦翔, 刘香健, 等. 圆红冬孢酵母的密码子用法分析. 菌物学报, 2018, 37(11): 1454-1465.
[30]   Zhang Q, Jiao X, Liu X J, et al. Analysis of codon usage in Rhodosporidium toruloides. Mycosystema, 2018, 37(11): 1454-1465.
[31]   van den Ent F, Löwe J. RF cloning: a restriction-free method for inserting target genes into plasmids. Journal of Biochemical and Biophysical Methods, 2006, 67(1): 67-74.
doi: 10.1016/j.jbbm.2005.12.008
[32]   Unger T, Jacobovitch Y, Dantes A, et al. Applications of the Restriction Free (RF) cloning procedure for molecular manipulations and protein expression. Journal of Structural Biology, 2010, 172(1): 34-44.
doi: 10.1016/j.jsb.2010.06.016
[33]   Lin X P, Yang F, Zhou Y J, et al. Highly-efficient colony PCR method for red yeasts and its application to identify mutations within two leucine auxotroph mutants. Yeast (Chichester, England), 2012, 29(11): 467-474.
doi: 10.1002/yea.2926
[34]   Sorci L, Martynowski D, Rodionov D A, et al. Nicotinamide mononucleotide synthetase is the key enzyme for an alternative route of NAD biosynthesis in Francisella tularensis. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(9): 3083-3088.
[35]   Sherman F. Getting started with yeast. Methods in Enzymology, 2002, 350: 3-41.
pmid: 12073320
[36]   Atkins J F, Wills N M, Loughran G, et al. A case for "StopGo": reprogramming translation to augment codon meaning of GGN by promoting unconventional termination (Stop) after addition of Glycine and then allowing continued translation (Go). RNA (New York, N Y), 2007, 13(6): 803-810.
[37]   Jiao X, Zhang Q, Zhang S F, et al. Efficient co-expression of multiple enzymes from a single promoter mediated by virus 2A sequence in the oleaginous yeast Rhodosporidium toruloides. FEMS Yeast Research, 2018, 18(8): foy086.
[38]   Geiselman G M, Zhuang X, Kirby J, et al. Production of ent-kaurene from lignocellulosic hydrolysate in Rhodosporidium toruloides. Microbial Cell Factories, 2020, 19(1): 24.
doi: 10.1186/s12934-020-1293-8 pmid: 32024522
[39]   Wilson C, Bellen H J, Gehring W J. Position effects on eukaryotic gene expression. Annual Review of Cell Biology, 1990, 6: 679-714.
pmid: 2275824
[40]   Chen X S, Zhang J Z. The genomic landscape of position effects on protein expression level and noise in yeast. Cell Systems, 2016, 2(5): 347-354.
doi: 10.1016/j.cels.2016.03.009
[41]   Evans C, Bogan K L, Song P, et al. NAD+ metabolite levels as a function of vitamins and calorie restriction: evidence for different mechanisms of longevity. BMC Chemical Biology, 2010, 10: 2.
doi: 10.1186/1472-6769-10-2
[42]   Park J O, Rubin S A, Xu Y F, et al. Metabolite concentrations, fluxes and free energies imply efficient enzyme usage. Nature Chemical Biology, 2016, 12 (7): 482-489.
doi: 10.1038/nchembio.2077
[43]   Belenky P A, Moga T G, Brenner C. Saccharomyces cerevisiae YOR071C encodes the high affinity nicotinamide riboside transporter Nrt1. Journal of Biological Chemistry, 2008, 283(13): 8075-8079.
doi: 10.1074/jbc.C800021200 pmid: 18258590
[44]   Bieganowski P, Brenner C. Discoveries of nicotinamide riboside as a nutrient and conserved NRK genes establish a preiss-handler independent route to NAD+ in fungi and humans. Cell, 2004, 117(4): 495-502.
doi: 10.1016/s0092-8674(04)00416-7 pmid: 15137942
[45]   Croft T, Venkatakrishnan P, Lin S J. NAD+ metabolism and regulation: lessons from yeast. Biomolecules, 2020, 10(2): 330.
doi: 10.3390/biom10020330
[46]   Garten A, Schuster S, Penke M, et al. Physiological and pathophysiological roles of NAMPT and NAD metabolism. Nature Reviews Endocrinology, 2015, 11 (9): 535-546.
doi: 10.1038/nrendo.2015.117 pmid: 26215259
[47]   Ostrander D B, O’Brien D J, Gorman J A, et al. Effect of CTP synthetase regulation by CTP on phospholipid synthesis in Saccharomyces cerevisiae. Journal of Biological Chemistry, 1998, 273(30): 18992-19001.
doi: 10.1074/jbc.273.30.18992 pmid: 9668079
[48]   Zhang S Y, Ito M, Skerker J M, et al. Metabolic engineering of the oleaginous yeast Rhodosporidium toruloides IFO 0880 for lipid overproduction during high-density fermentation. Applied Microbiology and Biotechnology, 2016, 100(21): 9393-9405.
doi: 10.1007/s00253-016-7815-y
[1] MA Ning,WANG Han-jie. Advances of Optogenetics in the Regulation of Bacterial Production[J]. China Biotechnology, 2021, 41(9): 101-109.
[2] HUANG Huan-bang,WU Yang,YANG You-hui,WANG Zhao-guan,QI Hao. Progress in Incorporation of Non-canonical Amino Acid Based on Archaeal Tyrosyl-tRNA Synthetase[J]. China Biotechnology, 2021, 41(9): 110-125.
[3] GUO Man-man,TIAN Kai-ren,QIAO Jian-jun,LI Yan-ni. Application of Phage Recombinase Systems in Synthetic Biology[J]. China Biotechnology, 2021, 41(8): 90-102.
[4] DONG Shu-xin,QIN Lei,LI Chun,LI Jun. Transcription Factor Engineering Harnesses Metabolic Networks to Meet Efficient Production in Cell Factories[J]. China Biotechnology, 2021, 41(4): 55-63.
[5] ZHENG Yi,GUO Shi-ying,SUI Feng-xiang,YANG Qi-yu,WEI Ya-xuan,LI Xiao-yan. Applications of Quorum Sensing Systems in Synthetic Biology[J]. China Biotechnology, 2021, 41(11): 100-109.
[6] CHA Ya-ping, ZHU Mu-zi, LI Shuang. Research Progress on In Vivo Continuous Directed Evolution[J]. China Biotechnology, 2021, 41(1): 42-51.
[7] GUO Er-peng, ZHANG Jian-zhi, SI Tong. Recent Advances in the High-throughput Engineering of Lanthipeptides[J]. China Biotechnology, 2021, 41(1): 30-41.
[8] CHANG Lu, HUANG Jiao-fang, DONG Hao, ZHOU Bin-hui, ZHU Xiao-juan, ZHUANG Ying-ping. A Review on Bioremediation and Detection of Heavy Metal Pollution by Synthetic Biological Engineered Microorganisms and Biofilms[J]. China Biotechnology, 2021, 41(1): 62-71.
[9] RAO Hai-mi,LIANG Dong-mei,LI Wei-guo,QIAO Jian-jun,CAI YIN Qing-ge-le. Advances in Synthetic Biology of Fungal Aromatic Polyketides[J]. China Biotechnology, 2020, 40(9): 52-61.
[10] ZHANG Yu-ting,LI Wei-guo,LIANG Dong-mei,QIAO Jian-jun,CAI YIN Qing-ge-le. Research Progress in Synthetic Biology of P450s in Terpenoid Synthesis[J]. China Biotechnology, 2020, 40(8): 84-96.
[11] WANG Zhen,LI Xia,YUAN Ying-jin. Advances in Production of Caffeic Acid and Its Ester Derivatives in Heterologous Microbes[J]. China Biotechnology, 2020, 40(7): 91-99.
[12] SUN Qing,LIU De-hua,CHEN Zhen. Research Progress of Methanol Utilization and Bioconversion[J]. China Biotechnology, 2020, 40(10): 65-75.
[13] LIU Jin-cong,LIU Xue,YU Hong-jian,ZHAO Guang-rong. Recent Advances in Microbial Production of Phloretin and Its Glycosides[J]. China Biotechnology, 2020, 40(10): 76-84.
[14] Hua-ling XIE,Dong-qiao LI,Pei-juan CHI,Yan-ping YANG. An Analysis on the Competition of Patents in Synthetic Biology[J]. China Biotechnology, 2019, 39(4): 114-123.
[15] Si-li YU,Xue LIU,Zhao-yu ZHANG,Hong-jian YU,Guang-rong ZHAO. Advances of Betalains Biosynthesis and Metabolic Regulation[J]. China Biotechnology, 2018, 38(8): 84-91.