Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2022, Vol. 42 Issue (5): 46-57    DOI: 10.13523/j.cb.2112013
    
Establishment of Anther-cultured Plant Regeneration System of Populus tomentosa Elite Clone ‘LM50’
MIAO De-yu1,GAO Kai2,HUANG Sai1,AN Xin-min1,**()
1 The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
2 Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
Download: HTML   PDF(3735KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Populus tomentosa Carr., LM50, as an elite with characteristics of fast growth, strong stress-tolerance and no flying fluff, is usually recommended as an optimal material for genetic transformation in woody plants. The long-term asexual propagation in practice would cause the decline of excellent traits. During tissue culture, problems such as adventitious bud differentiation and rooting difficulties of explants often occur. Through anther induction approach, the negative impacts caused by the aging of the explants will be eliminated or alleviated, and P. tomentosa can be rejuvenated in a short time, providing more optimal materials for genetic transformation. Meanwhile, haploid individuals are expected to be obtained, which will be used in genomics research and ploidy breeding. Using the ‘LM50’ of the P.tomentosa gene bank in Guanxian County, Shandong Province as the test material, by comparing morphological characteristics and microspore stage, the mononuclear side-stage anthers were selected for regeneration in vitro. The effects of auxins and cytokinins in induction of callus, adventitious bud differentiation and rooting were assessed, respectively. The ploidy levels of the plants generated from anther induction were identified by the flow cytometry and chromosome counting. Furthermore, the leaves of plantlets induced by anthers as explants were used to establish a tissue culture system with high leaf differentiation rate and high rooting rate. The comparison of the microspore development period and the external morphological characteristics of the flower bud shows that most of the microspores were in the mononuclear side stage when the 1/4 inflorescence emerged from floral bud whose size was (1.98 ± 0.06) cm; the anthers in this period were selected to induce callus formation. The medium with the highest callus induction rate was H + 1.00 mg/L NAA + 1.00 mg/L BA, and the induction rate was about 28.89%. The callus was further differentiated into adventitious buds.The optimal shoot induction medium was MS + 0.05 mg/L NAA + 0.50 mg/L BA, and the induction rate was approximately 22.23%; adventitious shoots were inoculated to rooting medium. The optimal rooting medium was 1/2 MS + 0.30 mg/L IBA with 93.30% rooting rate; ploidy identification of 27 regenerated plants cultured in anthers was conducted by flow cytometry and the chromosome compression method, and the plants were all diploid. The optimal medium of in vitro regenerating for leaves and stems of plants originated from anthers was MS+TDZ 0.10mg/L + NAA 0.10 mg/L + BA 0.50 mg/L, and the regeneration rate was as high as 92.23%. The rooting medium for adventitious buds produced by leaf differentiation was the same as that for adventitious buds induced by callus, and the rooting rate was the same. The study obtained ‘LM50’ anther-induced regeneration plants, and established a leaf culture system for the anther regeneration plants, with high differentiation rate and rooting rate, which can be used for the rapid propagation of this excellent clone and genetic transformation of P.tomentosa, and laid the foundation for the molecular design and breeding of P. tomentosa.



Key wordsPopulus tomentosa      Anther culture      Plant regeneration      Rejuvenation     
Received: 06 December 2021      Published: 17 June 2022
ZTFLH:  Q813  
Corresponding Authors: Xin-min AN     E-mail: xinminan@163.com
Cite this article:

MIAO De-yu,GAO Kai,HUANG Sai,AN Xin-min. Establishment of Anther-cultured Plant Regeneration System of Populus tomentosa Elite Clone ‘LM50’. China Biotechnology, 2022, 42(5): 46-57.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2112013     OR     https://manu60.magtech.com.cn/biotech/Y2022/V42/I5/46

Fig.1 Flower bud morphology and flower bud length of P. tomentosa in different periods The size of bar represents 1 cm
Fig.2 Observation on flower bud section of P. tomentosa (a),(b) Observation of paraffin section crosscutting in A1 period (c),(d) Observation of paraffin section crosscutting in A2 period (e),(f) Observation of paraffin section crosscutting in A3 period (g),(h) Observation of paraffin section crosscutting in A4 period (i),(j) Observation of paraffin section crosscutting in A1 period
Fig.3 Plant regeneration system by anther induction in P. tomentosa (a) Anther inoculation (b) Callus formation from anther culture (c) Shoots induction from callus on shoot induction medium (d) Adventitious buds are inoculated to rooting medium (e) Root growth status of P. tomentosa (f) Complete regenerated plants The size of bar represents 1cm
试验号 NAA/ (mg/L) BA/ (mg/L) 接种数 形成愈伤组织数 愈伤组织形成率/%
M1 0.00 0.00 30.00 0 0f
M2 0.00 0.50 30.00 0 0f
M3 0.00 1.00 30.00 0 0f
M4 0.00 1.50 30.00 0 0f
M5 0.50 0.00 30.00 0 0f
M6 0.50 0.50 30.00 1.67 5.56±0.02a
M7 0.50 1.00 30.00 0.67 2.22±0.02a
M8 0.50 1.50 30.00 0 0f
M9 1.00 0.00 30.00 0 0f
M10 1.00 0.50 30.00 4.00 13.33±0.03b
M11 1.00 1.00 30.00 8.67 28.89±0.02c
M12 1.00 1.50 30.00 2.67 8.89±0.02d
M13 1.50 0.00 30.00 0 0f
M14 1.50 0.50 30.00 0 0f
M15 1.50 1.00 30.00 3.33 11.11±0.02d
M16 1.50 1.50 30.00 6.00 20.00±0.03e
Table 1 Effects of plant growth regulators on callus formation from cultured P. tomentosa anthers
试验号 BA /(mg/L) NAA/(mg/L) 愈伤数量 分化数 分化率/%
B0 0 0 30.00 0 0c
B1 0.10 0.01 30.00 0 0c
B2 0.10 0.05 30.00 0 0c
B3 0.10 0.10 30.00 0 0c
B4 0.20 0.01 30.00 0 0c
B5 0.20 0.05 30.00 0 0c
B6 0.20 0.10 30.00 0 0c
B7 0.50 0.01 30.00 2.33 7.77±0.02a
B8 0.50 0.05 30.00 6.67 22.23±0.02b
B9 0.50 0.10 30.00 0 0c
Table 2 Effects of plant growth regulators composition and concentration on adventitious buds differentiation from calli derived from P. tomentosa anthers
试验号 IBA/(mg/L) 接种数 生根数 生根率/% 生长状况
R1 0 10.00 0 0e
R2 0.10 10.00 2.67 26.70±0.05a 主根不发达,侧根少
R3 0.20 10.00 6.33 63.30±0.05b 主根不发达,侧根少
R4 0.30 10.00 9.33 93.30±0.05c 主根发达,侧根较多
R5 0.40 10.00 8.67 86.70±0.05cd 主根不发达,侧根少
R6 0.50 10.00 8.00 80.00±0.10d 主根不发达,侧根少
Table 3 Effect of plant growth regulators on rooting of P. tomentosa
Fig.4 Identification of the ploidy of P. tomentosa by flow cytometry and chromosome compression method (a),(d) LM50 flow cytometry identification map and its corresponding root tip chromosome press, the number of chromosomes is 2n=2x=38 (b),(e) Flow cytometry identification map of the regenerated plant GM12 and its corresponding, the root tip chromosomes were pressed, and the number of chromosomes was 2n=2x=38 (c) Flow cytometry identification map after mixing of LM50 and GM12
Fig.5 In vitro regeneration system of clone‘GM12’ (a) Inoculation of leaves on shoot differentiation medium (b) Callus enlargement after one week of leaf culture (c) Buds on the leaves (d) Adventitious bud elongation (e) Adventitious shoots inoculated into rooting medium (f) Intact plant The size of bar represents 1cm
试验编号 NAA/(mg/L) TDZ/(mg/L) BA/(mg/L) 接种数 分化数 分化率/%
1 0 0 0 30.00 0 0
2 0.05 0.05 0.50 30.00 4.67 15.56
3 0.05 0.10 1.00 30.00 7.67 25.56
4 0.05 0.20 1.50 30.00 0 0
5 0.10 0.05 1.50 30.00 6.67 22.22
6 0.10 0.10 0.50 30.00 27.67 92.23
7 0.10 0.20 1.00 30.00 0 0
8 0.20 0.05 1.00 30.00 11.67 38.89
9 0.20 0.10 1.50 30.00 20.67 68.89
10 0.20 0.20 0.50 30.00 0 0
Table 4 Effects of hormone composition and concentration on leaf differentiation of ‘GM12’
[1]   Gao K, Li J, Khan W U, et al. Comparative genomic and phylogenetic analyses of Populus section Leuce using complete chloroplast genome sequences. Tree Genetics & Genomes, 2019, 15(3): 1-12.
[2]   Wang Z S, Du S H, Dayanandan S, et al. Phylogeny reconstruction and hybrid analysis of Populus (Salicaceae) based on nucleotide sequences of multiple single-copy nuclear genes and plastid fragments. PLoS One, 2014, 9(8): e103645.
doi: 10.1371/journal.pone.0103645
[3]   Chen Z, Rao P, Yang X, et al. A global view of transcriptome dynamics during male floral bud development in Populus tomentosa. Scientific Reports, 2018, 8: 722.
doi: 10.1038/s41598-017-18084-5
[4]   裴东, 谷瑞升. 树木复幼的研究概述. 植物学通报, 2005, 40(6): 753-760.
[4]   Pei D, Gu R S. A review on the rejuvenation of mature trees. Chinese Bulletin of Botany, 2005, 40(6): 753-760.
[5]   董胜君, 刘明国, 郑可, 等. 基于幼化效果的山杏组培繁殖技术研究. 西北植物学报, 2017, 37(3): 595-601.
[5]   Dong S J, Liu M G, Zheng K, et al. Tissue culture propagation technique of Armeniaca sibirica based on rejuvenation effect. Acta Botanica Boreali-Occidentalia Sinica, 2017, 37(3): 595-601.
[6]   邓建军, 李芳东, 乔杰, 等. 白花泡桐优树试管嫁接幼化及组培快繁技术研究. 林业科学研究, 2011, 24(5): 646-650.
[6]   Deng J J, Li F D, Qiao J, et al. Study on grafted tissue rejuvenation technology and rapid propagation of Paulownia fortunei superior trees. Forest Research, 2011, 24(5): 646-650.
[7]   张世红, 李坤霞, 朱淑新, 等. 毛白杨成熟效应与组培幼化. 西北林学院学报, 2010, 25(4): 83-86.
[7]   Zhang S H, Li K X, Zhu S X, et al. Cyclophysis and rejuvenation of Populus tomentosa by tissue culture. Journal of Northwest Forestry University, 2010, 25(4): 83-86.
[8]   吴丹, 姚栋萍, 李莺歌, 等. 水稻花药培养技术及其育种应用的研究进展. 湖南农业科学, 2015(2): 139-142.
[8]   Wu D, Yao D P, Li Y G, et al. Research progress of rice anther culture technology and its application in breeding. Hunan Agricultural Sciences, 2015(2): 139-142.
[9]   李雪, 赵方媛, 马文馨, 等. 小黑麦花药培养效果研讨. 分子植物育种, 2019, 17(1): 201-209.
[9]   Li X, Zhao F Y, Ma W X, et al. Studies on the anther culture effect of Triticale (Triticosecale wittmack). Molecular Plant Breeding, 2019, 17(1): 201-209.
[10]   单淑玲, 庞胜群, 郭晓珊, 等. 加工番茄 (Lycopersicon esculentum Mill.)花药愈伤组织诱导与增殖的初步探究. 分子植物育种, 2019, 17(19): 6418-6423.
[10]   Shan S L, Pang S Q, Guo X S, et al. Preliminary study on callus induction and proliferation of processing tomato (Lycopersicon esculentum Mill.). Molecular Plant Breeding, 2019, 17(19): 6418-6423.
[11]   朱湘渝, 王瑞玲, 梁彦. 杨树花粉植株的诱导. 林业科学, 1980, 16(3): 190-197, 242.
[11]   Zhu X Y, Wang R L, Liang Y. Induction of poplar pollen plantlets. Scientia Silvae Sinicae, 1980, 16(3): 190-197, 242.
[12]   李俊秀. B6杨花药培养研究. 哈尔滨: 东北林业大学, 2010.
[12]   Li J X. Research on anther cultures of B6 Populus. Harbin: Northeast Forestry University, 2010.
[13]   Bourgin J P, Nitsch J P. Production of haploid Nicotiana from excised stamens. Ann Physiol Veg, 1967, 9:377-382.
[14]   Murashige T, Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 1962, 15(3): 473-497.
doi: 10.1111/j.1399-3054.1962.tb08052.x
[15]   李英. 北京杨花药培养诱导单倍体再生体系的研究. 北京: 北京林业大学, 2013.
[15]   Li Y. Research of regeneration system of haploid plants from anther cultures of poplar (Populus × beijingensis). Beijing: Beijing Forestry University, 2013.
[16]   Gamborg O L, Miller R A, Ojima K. Nutrient requirements of suspension cultures of soybean root cells. Experimental Cell Research, 1968, 50(1): 151-158.
doi: 10.1016/0014-4827(68)90403-5 pmid: 5650857
[17]   Nitsch J P. Experimental and rogenesis in Nicotiona. Phytomorphology, 1969, 10: 389-404.
[18]   王敬驹, 孙敬三, 朱至清. 水稻花粉植株的诱导条件及影响诱导频率的某些因素. 植物学报, 1974, 16(1): 43-54.
[18]   Wang J J, Sun J S, Zhu Z Q. On the conditons for the induction of rice pollen plantlets and certain factors affecting the frequency of induction. Journal of Integrative Plant Biology, 1974, 16(1): 43-54.
[19]   贾际平, 吴丽萍, 曹明, 等. 高效冬枣花药愈伤组织培养体系的建立. 分子植物育种, 2018, 16(3): 948-953.
[19]   Jia J P, Wu L P, Cao M, et al. Establishment of a high-efficiency anther callus culture system of Dongzao (Ziziphus jujuba Mill.). Molecular Plant Breeding, 2018, 16(3): 948-953.
[20]   杜梦卿, 连朋, 王丽娟. 不同浓度TDZ和2, 4-D组合对草莓花药组织培养的影响. 东北农业科学, 2021, 46(2): 73-75, 131.
[20]   Du M Q, Lian P, Wang L J. Effects of different concentrations TDZ and 2, 4-D combination on anther tissue culture of strawberry. Journal of Northeast Agricultural Sciences, 2021, 46(2): 73-75, 131.
[21]   吴丽芳, 魏晓梅, 王总伟. 天蓝苜蓿花药愈伤组织诱导及再生体系的建立. 分子植物育种, 2021, 19(3): 962-971.
[21]   Wu L F, Wei X M, Wang Z W. Construction of a highly efficient anther culture technology system of Medicago lupulina. Molecular Plant Breeding, 2021, 19(3): 962-971.
[22]   高凯, 李娟, 安新民. 胡杨花药再生体系的建立. 西南林业大学学报(自然科学), 2020, 40(5): 159-165.
[22]   Gao K, Li J, An X M. Establishment of anther regeneration system of Populus euphratica. Journal of Southwest Forestry University (Natural Sciences), 2020, 40(5): 159-165.
[23]   田丹青, 葛亚英, 潘晓韵, 等. 红掌花药培养及单倍体植株的鉴定. 分子植物育种, 2020, 18(21): 7149-7154.
[23]   Tian D Q, Ge Y Y, Pan X Y, et al. Anther culture and haploid identification of Anthurium andraeanum. Molecular Plant Breeding, 2020, 18(21): 7149-7154.
[24]   殷丽琴, 付绍红, 杨进, 等. 植物单倍体的产生、鉴定、形成机理及应用. 遗传, 2016, 38(11): 979-991.
[24]   Yin L Q, Fu S H, Yang J, et al. Generation, identification, formation mechanism and application of plant haploids. Hereditas, 2016, 38(11): 979-991.
[25]   Blasco M, Badenes M L, Naval M D M. Colchicine-induced polyploidy in loquat [Eriobotrya japonica (Thunb.) Lindl.]. Plant Cell, Tissue and Organ Culture (PCTOC), 2015, 120(2): 453-461.
doi: 10.1007/s11240-014-0612-3
[26]   王广富. 软枣猕猴桃花药培养及再生体系建立. 北京: 中国农业科学院, 2017.
[26]   Wang G F. Anther culture and regeneration system establishment of Actinidia arguta (Sieb.& Zucc) Planch. ex Miq. Beijing: Chinese Academy of Agricultural Sciences, 2017.
[27]   王胤, 姚瑞玲, 李慧娟, 等. 基于外植体生理复幼的马尾松茎段芽无菌离体培养. 植物生理学报, 2019, 55(9): 1375-1384.
[27]   Wang Y, Yao R L, Li H J, et al. In vitro sterilized culture of nodal segments based on explants physiological rejuvenation in Pinus massoniana. Plant Physiology Journal, 2019, 55(9): 1375-1384.
[1] Xu-peng ZHAO,Xiao-peng ZHAO,Hao SHI,Xue-mei CHEN,Ting JIANG,Yan LIU. Establishment of High Frequency Regeneration via Leaf Explants of ‘Guichang’ Kiwifruit (Actinidia chinensis)[J]. China Biotechnology, 2018, 38(10): 48-54.
[2] OU Qiao-ming, HOU Yi-qing, BAO Mei-nian, HU Da, CHEN Yu-liang, YUE Chun-ling. The Suspended Single Cell Culture and Embryogeny and Plant Regeneration of Pinellia ternata[J]. China Biotechnology, 2012, 32(10): 39-49.
[3] . Advances in Genetic Transformation of Panax Ginseng[J]. China Biotechnology, 2009, 29(09): 0-0.
[4] . Somatic Embryogenesis and Plant Regeneration of Cassava(Manihot esculenta Crantz)[J]. China Biotechnology, 2008, 28(12): 52-56.
[5] . Advances of Genetic Transformation of Tall Fescue[J]. China Biotechnology, 2006, 26(08): 15-21.