Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2019, Vol. 39 Issue (4): 8-15    DOI: 10.13523/j.cb.20190402
    
Inhibition of Acute Myocardial Infarction by miR-219 on ENDMT Pathway by Targeting TGFBR2
Yi-wei GUO(),Song-tao WANG,Wei-gang CUI
Department of Anatomy, Xinxiang Medical University, Xinxiang 453003, China
Download: HTML   PDF(982KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: miR-219 mediated the development of acute myocardial infarction through the regulation mechanism of TGFBR2 and the ENDMT pathway. Methods: The expression of miR-219 in the serum of AMI patients and mice was detected by qRT-PCR. The target gene of miR-219 was screened in gene database of microRNA. The regulatory mechanism of TGFBR2 and miR-219 was examined by luciferase reporter gene and qRT-PCR.The blood scores (LVEF) of AMI mice were measured 4 weeks after myocardial injection of miR-219 lentivirus (LVEF) by cardiac echocardiography. The mRNA expression of Nppa in AMI mice injected with miR-219 lentivirus was detected by qRT-PCR. The changes of left ventricular fibrosis in mice were detected by Masson’s trichrome staining. immunohistochemical analysis of the left ventricular section of mice was performed using spla-sma. Expression levels of P-smad2, P-smad3 and TGFBR2 hypoxia induced protein phosphorylation were detected by Western blot. Results: miR-219 can regulate AMI. miR-219 inhibited the mRNA expression of TGFBR2, while miR-219 inhibitor inhibited the down-regulation effect. miR-219 can inhibit the process of acute myocardial infarction and promote the recovery of myocardial function of infarction. miR-219 can promote the angiogenesis and maturity of the myocardial tissue of AMI mice, and eventually the cardiac contractility increases and the cardiac function recovers. miR-219 can inhibit the inhibition of EndMT pathway by TGFBR2, leading to the alleviation of the pathological process of AMI. Conclusion: miR-219 can inhibit the EndMT pathway by inhibiting TGFBR2, reduce myocardial fibrosis, promote angiogenesis and maturity, recover cardiac function and inhibit the pathological development of AMI.



Key wordsAMI      miR-219      TGFBR2      EndMT     
Received: 28 September 2018      Published: 08 May 2019
ZTFLH:  Q819  
Corresponding Authors: Yi-wei GUO     E-mail: 4174150@qq.com
Cite this article:

Yi-wei GUO,Song-tao WANG,Wei-gang CUI. Inhibition of Acute Myocardial Infarction by miR-219 on ENDMT Pathway by Targeting TGFBR2. China Biotechnology, 2019, 39(4): 8-15.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20190402     OR     https://manu60.magtech.com.cn/biotech/Y2019/V39/I4/8

成分 体积
Total RNA 2μl
Oligo(dT)18 primer 1μl
5×Reaction buffer 4μl
Ribolock TM RNase inhibitor 1μl
10mmol/L dNTP mix 2μl
RevertAid TM M-MuLV reverse transcriptase 1μl
Water neuclease-free 9μl
Table 1 Reverse transcription system
试剂 体积
SYBR® Premix Ex Tap TM Ⅱ 10μl
PCR forward primer (10μmol/L) 0.8μl
PCR recerse primer (10μmol/L) 0.8μl
ROX reference dye 0.4μl
DNA 模板 2μl
灭菌蒸馏水 6μl
Total 20μl
Table 2 qRT-PCR reaction system
Fig.1 Expression of miR-219 in serum of AMI patients and AMI mice (a) Relative expression of miR-219 in serum of AMI patients and normal group (b) Relative expression of miR-219 in serum of AMI mice and sham-operated mice ** : Indicating P<0.01, the difference is statistically significant
Fig.2 Regulation of target gene TGFBR2 and miR-219 (a) Predicted miR-219 potential target gene by TargetScan (b) The result of dual luciferase reporter gene assay (c) qRT-PCR result of TGFBR2 mRNA relative expression in each groups ** : Indicating P<0.01, the difference is statistically significant
Fig.3 Effect of miR-219 on cardiac fibrosis in AMI mice (a) The degree of left ventricular ejection fraction (LVEF) deterioration in mice detected by cardiac echocardiography (b) Nppa mRNA relative expression detected by qRT-PCR (c) Detected the left ventricular fibrosis in mice by Masson’s trichrome staining ** :Indicating P<0.01, the difference is statistically significant
Fig.4 Immunohistochemical results of α-SMA in left ventricular sections of mice in each treatment group
Fig.5 Expression levels of P-smad2, P-smad3 and TGFBR2 in each group detected by Western blot
[1]   田国芳, 宋玉勤, 程宇彤 , 等. 急性心肌梗死介入治疗术后的康复运动疗法研究进展. 心脏杂志, 2016,28(4):492-495.
[1]   Tian G F, Song Y Q, Cheng Y X , et al. Progress in rehabilitation exercise therapy after interventional therapy for acute myocardial infarction. J Cardiol, 2016,28(4):492-495.
[2]   Toltl L J, Swystun L L , Pepler L , et a1. Protective effects of activated protein C in sepsis. Thromb Haemost, 2008,100(4):582-592.
doi: 10.1160/TH08-03-0159 pmid: 18841279
[3]   Travers J G, Kamal F A , Bobbins J , et a1. Cardiac fihrosis: the fibroblast awakens. Circ Res, 2016,118(6):1021-1040.
doi: 10.1161/CIRCRESAHA.115.306565
[4]   林昌建, 孔辉, 解卫平 , 等. EndMT在血管重塑中的作用及相关信号通路. 江苏医药, 2016,42(12):1384-1386.
[4]   Lin C J, Kong H, Xie W P , et al. The role of EndMT in vascular remodeling and related signaling pathways. Jiangsu Medical Journal, 2016,42(12):1384-1386.
[5]   Fidler I J . Seed and soil revisited: contribution of the organ microenvironment to cancer metastasis. Surg Oncol Clin N Am, 2001,10(2):257-269.
doi: 10.1016/S1055-3207(18)30064-4
[6]   张召才, 严静, 虞意华 , 等. 心肌炎小鼠心肌纤维化与心脏上皮/内皮间充质转化的关系. 中国病理生理杂志, 2011,27(9):1692-1696.
doi: 10.3969/j.issn.1000-4718.2011.09.006
[6]   Zhang Z C , Yan J, Qi Y H , et al. Relationship between myocardial fibrosis and cardiac epithelial/endothelial mesenchymal transition in myocarditis mice. Chinese Journal of Pathophysiology, 2011,27(9):1692-1696.
doi: 10.3969/j.issn.1000-4718.2011.09.006
[7]   Zeisberg E M, Tarnavski O, Zeisberg M , et al. Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat Med, 2007,13(8):952-961.
[8]   Davis U E, Senger D R . Endothelial extracellular matrix: biosynthesis, remodeling, and functions during vascular morphogenesis and neovessel stabilization. Circ Res, 2005,97(11):1093-1107.
doi: 10.1161/01.RES.0000191547.64391.e3
[9]   Yang M, Zhu M, Tang L , et al. Polymorphisms of TGF-β1 and TGFBR2 in relation to coronary artery disease in a Chinese population. Clin Biochem, 2016,49(12):873-878.
doi: 10.1016/j.clinbiochem.2016.05.022 pmid: 27234600
[10]   Liu Z, Yang D, Xie P , et al. MiR-106b and miR-15b modulate apoptosis and angiogenesis in myocardial infarction. Cell Physiol Biochem, 2012,29(5-6):851-862.
doi: 10.1159/000258197
[11]   Liu X, Zhang Y, Du W , et al. MiR-223-3p as a novel microRNA regulator of expression of voltage-gated K+ channel Kv4.2 in acute myocardial infarction. Cell Physiol Biochem, 2016,39(1):102-114.
doi: 10.1159/000445609
[12]   Medici D, Potenta S, Kalluri R . Transforming growth factot-β2 promotes Snail-mediated endothelial-mesenchymal transition through convergence of Smad-dependent and Smad-independent signaling. Biochem, 2011,437(3):515-520.
doi: 10.1042/BJ20101500
[13]   Olivieri F, Antonicelli R, Lorenzi M , et al. Diagnostic potential of circulating miR-499-5p in elderly patients with acute non ST-elevation myocardial infarction. Int J Cardiol, 2013,167(2):531-536.
doi: 10.1016/j.ijcard.2012.01.075 pmid: 22330002
[14]   Lv P, Zhou M, He J , et al. Circulating miR-208b and miR-34a are associated with left ventricular remodeling after acute myocardial infarction. Int J Mol Sci, 2014,15(4):5774-5788.
doi: 10.3390/ijms15045774
[15]   Rui Z, Chao L, Hui P , et al. Expression of circulating miR-486 and miR-150 in patients with acute myocardial infarction. BMC Cardiovasc Disord, 2015,15(1):1-7.
doi: 10.1186/1471-2261-15-1 pmid: 25592444
[16]   Xian L, Zhanwei F, Tianshu Z , et al. Plasma miR-1, miR-208, miR-499 as potential predictive biomarkers for acute myocardial infarction: An independent study of Han population. Exp Gerontol, 2015,72:230-238.
doi: 10.1016/j.exger.2015.10.011 pmid: 26526403
[17]   Cheng H Y, Papp J W, Varlamova O , et al. microRNA modulation of circadian-clock period and entrainment. Neuron, 2007,54(5):813-829.
doi: 10.1016/j.neuron.2007.05.017
[18]   Lukiw W J . Micro-RNA speciation in fetal, adult and Alzheimer’s disease hippocampus. Neuroreport, 2007,18(3):297-300.
doi: 10.1097/WNR.0b013e3280148e8b pmid: 17314675
[19]   Shi W, Du J, Qi Y , et al. Aberrant expression of serum miRNAs in schizophrenia. J Psychiatr Res, 2012,46(2):198-204.
doi: 10.1016/j.jpsychires.2011.09.010
[20]   周依蒙, 郑鹏翔, 戴晓勇 , 等. 微小RNA-678调控心肌梗死相关转录因子FoxP1的表达研究. 国际心血管病杂志, 2018,45(1):4 4-47.
[20]   Zhou Y M, Zheng P X, Dai X Y , et al. MicroRNA-678 regulates the expression of FoxP1, a transcription factor related to myocardial infarction. International Journal of Cardiovascular Diseases, 2018,45(1):44-47.
[21]   Ha J S, Kim Y H . A sporadic case of Loeys-Dietz syndrome type I with two novel mutations of the TGFBR2 gene. Korean Journal of Pediatrics, 2011,54(6):272-275.
doi: 10.3345/kjp.2011.54.6.272 pmid: 21949523
[22]   Jamsheer A, Henggeler C, Wierzba J , et al. A new sporadic case of early-onset Loeys-Dietz syndrome due to the recurrent mutation p.R528C in the TGFBR2 gene substantiates interind Ⅳidual clinical variability. Journal of Applied Genetics, 2009,50(4):405-410.
doi: 10.1007/BF03195701 pmid: 19875893
[23]   刘艳华, 李宾公 . 内皮间质转分化在心血管疾病中的研究进展. 医学研究生学报, 2016,29(8):872-876.
doi: 10.16571/j.cnki.1008-8199.2016.08.020
[23]   Liu Y H, Li B G . Advances in the study of endothelial mesenchymal transition in cardiovascular diseases. Journal of Medical Postgraduate, 2016,29(8):872-876.
doi: 10.16571/j.cnki.1008-8199.2016.08.020
[24]   马坤岭, 刘晶, 倪杰 , 等. 微炎症致脂质稳态失调在小鼠心肌纤维化中的作用. 中华心血管病杂志, 2013,41(7):602-606.
doi: 10.3760/cma.j.issn.0253-3758.2013.07.019
[24]   Ma K L, Liu J, Ni J , et al. The role of microinflammation-induced lipid homeostasis in myocardial fibrosis in mice. Chinese Journal of Cardiovascular Diseases, 2013,41(7):602-606.
doi: 10.3760/cma.j.issn.0253-3758.2013.07.019
[25]   鞠延玲, 朱国伟, 赵旭 , 等. miR-330-5p负性调控ADAM17基因抑制人心脏微血管内皮细胞的间质转化. 贵州医药, 2016,40(10):1011-1014.
[25]   Yan Y L, Zhu G W, Zhao X , et al. Negative regulation of ADAM17 gene by miR-330-5p inhibits mesenchymal transition of human cardiac microvascular endothelial cells. Guizhou Medicine, 2016,40(10):1011-1014.
[26]   史可欣, 梅焕平 . 转化生长因子-β调控内皮间充质转化的研究进展. 山西医药杂志, 2017,46(5):522-526.
doi: 10.3969/j.issn.0253-9926.2017.05.009
[26]   Shi K X, Mei H P . Research progress of transforming growth factor-β in regulating endothelial mesenchymal transition. Shanxi Medical Journal, 2017,46(5):522-526.
doi: 10.3969/j.issn.0253-9926.2017.05.009
[27]   Liu Z, Zhang K, Wang Q L , et al. Serum TGF-β1 in patients with acute myocardial infarction. Br J Biomed Sci, 2016,73(2):90-93.
doi: 10.1080/09674845.2016.1166683 pmid: 27181170
[1] HUANG Huan-bang,WU Yang,YANG You-hui,WANG Zhao-guan,QI Hao. Progress in Incorporation of Non-canonical Amino Acid Based on Archaeal Tyrosyl-tRNA Synthetase[J]. China Biotechnology, 2021, 41(9): 110-125.
[2] CHEN Kai-tong,ZHENG Wen-long,YANG Li-rong,XU Gang,WU Jian-ping. Immobilized L-threonine Aldolase by Amino Resin and Its Application[J]. China Biotechnology, 2021, 41(9): 55-63.
[3] YUAN Xiao-jing,YIN Hai-meng,FAN Xiao-wei,HE Jun-lin,HAO Shi-lei,JI Jin-gou. Preparation and Wound Repair of Keratin/Sodium Alginate/Polyacrylamide Hydrogel Skin Dressing[J]. China Biotechnology, 2021, 41(8): 17-24.
[4] ZHANG Heng,LIU Hui-yan,PAN Lin,WANG Hong-yan,LI Xiao-fang,WANG Tong,FANG Hai-tian. Research Strategy for Biosynthesis of Gamma Aminobutyric Acid[J]. China Biotechnology, 2021, 41(8): 110-119.
[5] LI Zhi-gang,GU Yang,TAN Hai,ZHANG Zhong-hua,CHANG Jing-ling. Enhanced Cyclic Adenosine Monophosphate Fermentation Production by Aminophylline and Citrate Coupling Addition[J]. China Biotechnology, 2021, 41(7): 50-57.
[6] KANG Ke-ren,YUAN Qiang,LIANG Fei-min,WU Li-xian. Synthesis of Benzfetamine Artificial Antigen[J]. China Biotechnology, 2021, 41(7): 58-65.
[7] DONG Xue-ying,LIANG Kai,YE Ke-ying,ZHOU Ce-fan,TANG Jing-feng. Advances in the Regulation of Receptor Tyrosine Kinase on Autophagy[J]. China Biotechnology, 2021, 41(5): 72-78.
[8] LIAO Dan-ni,ZHANG Zhao-yang,JIN Jin,LI Xia,JIA Bin. Progress in the Study of Microbial tRNA and Genetic Codon System Related Applications[J]. China Biotechnology, 2021, 41(4): 64-73.
[9] HAN Xue-yi,LI Yi-fan,LU Yue-da,XIONG Guo-liang,YU Chang-yuan. Preparation of Porphyrin Metal-organic Framework with Autophagy Inhibitory Effect and Its Photodynamic Cancer Treatment[J]. China Biotechnology, 2021, 41(11): 48-54.
[10] ZHENG Yi,GUO Shi-ying,SUI Feng-xiang,YANG Qi-yu,WEI Ya-xuan,LI Xiao-yan. Applications of Quorum Sensing Systems in Synthetic Biology[J]. China Biotechnology, 2021, 41(11): 100-109.
[11] CHEN Xin-jie,QIAN Zhi-lan,LIU Qi,ZHAO Qing,ZHANG Yuan-xing,CAI Meng-hao. Modification of Aromatic Amino Acid Synthetic Pathway in Pichia pastoris to Produce Cinnamic Acid and ρ-Coumaric Acid[J]. China Biotechnology, 2021, 41(10): 52-61.
[12] ZHU Ya-xin, DUAN Yan-ting, GAO Yu-hao, WANG Ji-yue, ZHANG Xiao-mei, ZHANG Xiao-juan, XU Guo-qiang, SHI Jin-song, XU Zheng-hong. Synthesis and Regulation of Poly-γ-glutamic Acid with Different D/L Monomer Ratios[J]. China Biotechnology, 2021, 41(1): 1-11.
[13] WU Hong-xuan, YANG Jin-hua, SHEN Pei-jie, LI Qing-chen, HUANG Jian-zhong, QI Feng. Study on the Production of Indole-3-acetic Acid Using E. coli Cell Factory[J]. China Biotechnology, 2021, 41(1): 12-19.
[14] PENG Hai-li,HOU Zhan-ming. MGV1 Dependent Transcripts(MDT1)Gene in Fusarium Graminearum is Involved in Conidiation and Vegetative Growth[J]. China Biotechnology, 2020, 40(8): 10-18.
[15] XUE Yan-ting,WU Sheng-bo,XU Cheng-yang,YUAN Bo-xin,YANG Shu-juan,LIU Jia-heng,QIAO Jian-jun,ZHU Hong-ji. Research Progress on the Quorum Sensing in the Dynamic Metabolic Regulation[J]. China Biotechnology, 2020, 40(6): 74-83.