Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2021, Vol. 41 Issue (1): 1-11    DOI: 10.13523/j.cb.2009029
    
Synthesis and Regulation of Poly-γ-glutamic Acid with Different D/L Monomer Ratios
ZHU Ya-xin1,2,DUAN Yan-ting1,2,GAO Yu-hao1,2,WANG Ji-yue1,2,ZHANG Xiao-mei3,ZHANG Xiao-juan1,2,XU Guo-qiang1,2,**(),SHI Jin-song3,XU Zheng-hong1,2
1 Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
2 National Engineering Laboratory for Food Fermentation Technology and Technology, Jiangnan University, Wuxi 214122, China
3 School of Pharmaceutics, Jiangnan University, Wuxi 214122, China
Download: HTML   PDF(37094KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Poly-γ-glutamic acid (γ-PGA) is a kind of poly-amino acid formed by polymerization of L-glutamic acid (L-Glu) and / or D-glutamic acid (D-Glu), and is widely used in cosmetics, medicine and other fields. The stereochemical composition of its monomer often affects the properties and applications of the product. Therefore, it is of great significance to control the monomer ratio of D-Glu/L-Glu (D/L monomer ratio) in γ-PGA. In our previous study, Corynebacterium glutamicum was used as the chassis to overexpress γ-PGA synthetase from Bacillus licheniformis, and synthesize γ-PGA with L-Glu as the main component. On this basis, different concentrations of D-Glu were added exogenously to synthesize γ-PGA with D-Glu accounting for 15.71% ~ 33.52%. Then, the glutamate racemase from Bacillus subtilis was overexpressed in the recombinant bacteria, and three RBS of different strengths were used to regulate its expression level, however, and γ-PGA with D-Glu accounting for a narrow range (30.82%~34.59%) was synthesized. Subsequently, four different strength promoters were used to regulate the expression level of glutamate racemase, and γ-PGA with D-Glu accounting for 32.71%~52.53% was synthesized. A rational strategy for regulating the D/L monomer ratio of γ-PGA was proposed, and γ-PGA with a D-Glu ratio of 2.90%~52.53% was synthesized, which laid the foundation for the efficient synthesis of γ-PGA with different D/L monomer ratios.



Key wordsPoly-γ-glutamic acid;      D/L monomer ratio      Glutamate racemase      RBS      Promoter     
Received: 17 September 2020      Published: 09 February 2021
ZTFLH:  Q815  
Corresponding Authors: Guo-qiang XU     E-mail: xuguoqiang@jiangnan.edu.cn
Cite this article:

ZHU Ya-xin, DUAN Yan-ting, GAO Yu-hao, WANG Ji-yue, ZHANG Xiao-mei, ZHANG Xiao-juan, XU Guo-qiang, SHI Jin-song, XU Zheng-hong. Synthesis and Regulation of Poly-γ-glutamic Acid with Different D/L Monomer Ratios. China Biotechnology, 2021, 41(1): 1-11.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2009029     OR     https://manu60.magtech.com.cn/biotech/Y2021/V41/I1/1

Strains/Plasmids Description Sources
Cg F343-pZM1-capBCA Cg F343 harboring pZM1-capBCA This study
Cg F343-pZM1-capBCA-R0-racE Cg F343 harboring pZM1- capBCA-R0-racE This study
Cg F343-pZM1-capBCA-RH-racE Cg F343 harboring pZM1- capBCA-RH-racE This study
Cg F343-pZM1-capBCA-RL-racE Cg F343 harboring pZM1- capBCA-RL-racE This study
Cg F343-pZM1-capBCA-e-racE Cg F343 harboring pZM1- capBCA-e-racE This study
Cg F343-pZM1-capBCA-16-racE Cg F343 harboring pZM1- capBCA-16-racE This study
Cg F343-pZM1-capBCA-11-racE Cg F343 harboring pZM1- capBCA-11-racE This study
Cg F343-pZM1-capBCA-12-racE Cg F343 harboring pZM1- capBCA-12-racE This study
Table 1 Strains and plasmids
引物名称 序列(5'-3')
racE-R0-F GGGAATTCCATATGTTGGAACAACCAATAGGAGT
racE-RL-F CGCGGATCCCTATCTTCTAATCGGTTCTTG
racE-RH-F CTAGTCTAGAGGGGTCACGACACACGTCAGGCGAATTGGAACAACCAATAGGAGT
BamH I-racE-R CGCGGATCCCTATCTTCTAATCGGTTCTTG
dap-e-racE-F AATTACCGCCTAGGGAGCTGTTGTTTAGCCACCAAATGAGGGAAAGAGGCACAATGGAACTC
dap-A-16-1-racE-F AATTACCGCCTAGGGAGCTGTTGTTTAACCCCCAAATGAGGGAAGAAGGTATAATTGAACTC
dap-e11-racE-F AATTACCGCCTAGGGAGCTGTTGTTTTGACACCAAATGAGGGAATGTGCTATAATGGAACTC
dap-e12-racE-F AATTACCGCCTAGGGAGCTGTTGTTTTGACACCAAATGAGGGAATGTGGTAGAGTGGAACTC
Sal I-racE-R ACGCGTCGACTCCTCCTTTCGCTAGCAAAAAACCC
pZM1-F TGTTGCCCGTCTCACTGGT
pZM1-R CGACACGGAAATGTTGAATA
pZM1-capBCA-F TTGAAACGAAAAGCGATCTT
racE- RT-F ATCGCATTGGAAGACATC
racE- RT-R TGCTCTTAATCGTATTCTCTG
Table 2 Primer sequences used in this study
Fig.1 Fermentation profile of C. glutamicum F343-pZM1-capBCA
Fig.2 Stereochemical composition of γ-PGA produced by C. glutamicum F343-pZM1-capBCA
Fig.3 The effect of adding D-Glu exogenously on the D/L monomer ratio of γ-PGA
Fig.4 PCR confirmation of recombinant strain C. glutamicum F343 pZMI-capBCA-R0/RH/RL-racE M:DNA marker;1:capBCA-R0-racE; 2: capBCA-RH-racE; 3: capBCA-RL-racE
Fig.5 The effect of regulating the expression of glutamate racemase on the fermentation characteristics of γ-PGA based on the RBS calculator (a)Biomass (b)Residual glucose (c)L-glutamic acid (d)γ-PGA
Fig.6 The effect of RBS regulating the expression level of glutamate racemase on the D/L monomer ratio of γ-PGA (a) and enzyme activity of RacE (b)
Fig.7 PCR confirmation of recombinant strain C. glutamicumF343 pZMI-capBCA- e/11/12/16-racE M:DNA marker;1:capBCA-e-racE; 2: capBCA-11-racE; 3: capBCA-12-racE;4: capBCA-16-racE
Fig.8 The effect of regulating the expression of glutamate racemase on the fermentation characteristics of γ-PGA based on constitutive promoters (a)Biomass (b)Residual glucose (c)L-glutamic acid (d)γ-PGA
Fig.9 The effect of RBS regulating the expression level of glutamate racemase on the D/L monomer ratio of γ-PGA (a) and transcriptional level of RacE (b)
[1]   Cao M F, Feng J, Sirisansaneeyakul S, et al. Genetic and metabolic engineering for microbial production of poly-γ-glutamic acid. Biotechnology Advances, 2018,36(5):1424-1433.
pmid: 29852203
[2]   Sha Y Y, Sun T, Qiu Y B, et al. Investigation of glutamate dependence mechanism for poly-γ-glutamic acid production in Bacillus subtilis on the basis of transcriptome analysis. Journal of Agricultural and Food Chemistry, 2019,67(22):6263-6274.
pmid: 31088055
[3]   Zhang C, Wu D J, Qiu X L. Stimulatory effects of amino acids on γ-polyglutamic acid production by Bacillus subtilis. Scientific Reports, 2018,8(1):17934.
[4]   Wu H Y, Li J H, Wei J C, et al. Disulfide-crosslinked poly(L-glutamic acid) grafted mesoporous silica nanoparticles and their potential application in drug delivery. Chemical Research in Chinese Universities, 2015,31(5):890-894.
[5]   Cao B, Yin J B, Yan S F, et al. Porous scaffolds based on cross-linking of poly(L-glutamic acid). Macromolecular Bioscience, 2011,11(3):427-434.
[6]   王波, 李贵飞, 宗鸿杰, 等. 聚L-谷氨酸光交联水凝胶的制备和性能. 高分子材料科学与工程, 2020,36(1):126-133.
[6]   Wang B, Li G F, Zong H J, et al. Fabrication and characterization of photo-crosslinked poly(L-glutamic acid) hydrogels. Polymer Materials Science and Engineering, 2020,36(1):126-133.
[7]   Inbaraj B S, Chen B H. In vitro removal of toxic heavy metals by poly(γ-glutamic acid)-coated superparamagnetic nanoparticles. International Journal of Nanomedicine, 2012,7:4419-4432.
doi: 10.2147/IJN.S34396 pmid: 22927758
[8]   Mark S S, Crusberg T C, DaCunha C M, et al. A heavy metal biotrap for wastewater remediation using poly-γ-glutamic acid. Biotechnology Progress, 2006,22(2):523-531.
pmid: 16599572
[9]   Cao M F, Song C J, Jin Y H, et al. Synthesis of poly (γ-glutamic acid) and heterologous expression of pgsBCA genes. Journal of Molecular Catalysis B: Enzymatic, 2010,67(1-2):111-116.
[10]   Cava F, Lam H, de Pedro M A, et al. Emerging knowledge of regulatory roles of D-amino acids in bacteria. Cellular and Molecular Life Sciences, 2011,68(5):817-831.
pmid: 21161322
[11]   Cai D B, Chen Y Z, He P H, et al. Enhanced production of poly-γ-glutamic acid by improving ATP supply in metabolically engineered Bacillus licheniformis. Biotechnology and Bioengineering, 2018,115(10):2541-2553.
pmid: 29940069
[12]   Gao W, He Y, Zhang F, et al. Metabolic engineering of Bacillus amyloliquefaciens LL3 for enhanced poly-γ-glutamic acid synthesis. Microbial Biotechnology, 2019,12(5):932-945.
[13]   Hezayen F F, Rehm B H, Tindall B J, et al. Transfer of Natrialba asiatica B1T to Natrialba taiwanensis sp. nov. and description of Natrialba aegyptiaca sp. nov, a novel extremely halophilic, aerobic, non-pigmented member of the Archaea from Egypt that produces extracellular poly(glutamic acid). International Journal of Systematic and Evolutionary Microbiology, 2001,51(3):1133-1142.
[14]   Niemetz R, Kärcher U, Kandler O, et al. The cell wall polymer of the extremely halophilic archaeon natronococcus occultus. European Journal of Biochemistry, 1997,249(3):905-911.
doi: 10.1111/j.1432-1033.1997.00905.x pmid: 9395342
[15]   Ashiuchi M, Kamei T, Misono H. Poly-γ-glutamate synthetase of Bacillus subtilis. Journal of Molecular Catalysis B: Enzymatic, 2003,23(2-6):101-106.
[16]   Pérez-Camero G, Congregado F, Bou J J, et al. Biosynthesis and ultrasonic degradation of bacterial poly(γ-glutamic acid). Biotechnology and Bioengineering, 1999,63(1):110-115.
pmid: 10099586
[17]   Wu Q, Xu H, Xu L, et al. Biosynthesis of poly(γ-glutamic acid) in Bacillus subtilis NX-2: regulation of stereochemical composition of poly(γ-glutamic acid). Process Biochemistry, 2006,41(7):1650-1655.
[18]   Halmschlag B, Steurer X, Putri S P, et al. Tailor-made poly-γ-glutamic acid production. Metabolic Engineering, 2019,55:239-248.
doi: 10.1016/j.ymben.2019.07.009 pmid: 31344452
[19]   程慧, 陈园园, 朱亚鑫, 等. 谷氨酸棒杆菌一步法发酵糖质原料生产γ-聚谷氨酸. 生物工程学报, 2020,36(2):295-308.
[19]   Cheng H, Chen Y Y, Zhu Y X, et al. Poly-γ-glutamic acid production in Corynebacterium glutamicum using sugar by one-step fermentation. Chinese Journal of Biotechnology, 2020,36(2):295-308.
[20]   Xu G Q, Zha J, Cheng H, et al. Engineering Corynebacterium glutamicum for the de novo biosynthesis of tailored poly-γ-glutamic acid. Metabolic Engineering, 2019,56:39-49.
[21]   Lam H, Oh D C, Cava F, et al. D-amino acids govern stationary phase cell wall remodeling in bacteria. Science, 2009,325(5947):1552-1555.
doi: 10.1126/science.1178123 pmid: 19762646
[22]   Caparros M, Pisabarro A G, Depedro M A. Effect of D-amino acids on structure and synthesis of peptidoglycan in Escherichia coli. Journal of Bacteriology, 1992,174(17):5549-5559.
pmid: 1512190
[23]   Stabler N, Oikawa T, Bott M, et al. Corynebacterium glutamicum as a host for synthesis and export of D-amino acids. Journal of Bacteriology, 2011,193(7):1702-1709.
pmid: 21257776
[24]   Sha Y Y, Huang Y Y, Zhu Y F, et al. Efficient biosynthesis of low-molecular-weight poly-γ-glutamic acid based on stereochemistry regulation in Bacillus amyloliquefaciens. ACS Synthetic Biology, 2020,9(6):1395-1405.
doi: 10.1021/acssynbio.0c00080 pmid: 32353226
[25]   Espah Borujeni A, Salis H M. Translation initiation is controlled by RNA folding kinetics via a ribosome drafting mechanism. Journal of the American Chemical Society, 2016,138(22):7016-7023.
[26]   Espah Borujeni A, Cetnar D, Farasat I, et al. Precise quantification of translation inhibition by mRNA structures that overlap with the ribosomal footprint in N-terminal coding sequences. Nucleic Acids Research, 2017,45(9):5437-5448.
pmid: 28158713
[27]   Salis H M, Mirsky E A, Voigt C A. Automated design of synthetic ribosome binding sites to control protein expression. Nature Biotechnology, 2009,27(10):946-950.
doi: 10.1038/nbt.1568 pmid: 19801975
[28]   Volkenborn K, Kuschmierz L, Benz N, et al. The length of ribosomal binding site spacer sequence controls the production yield for intracellular and secreted proteins by Bacillus subtilis. Microbial Cell Factories, 2020,19(1):12.
doi: 10.1186/s12934-020-1281-z pmid: 31973723
[29]   Hollerer S, Papaxanthos L, Gumpinger A C, et al. Large-scale DNA-based phenotypic recording and deep learning enable highly accurate sequence-function mapping. Nature Communications, 2020,11(1):15.
[30]   Li N, Zeng W Z, Xu S, et al. Obtaining a series of native gradient promoter-5'-UTR sequences in Corynebacterium glutamicum ATCC 13032. Microbial Cell Factories, 2020,19(1):120.
doi: 10.1186/s12934-020-01376-3 pmid: 32493332
[31]   Sha Y Y, Qiu Y B, Zhu Y F, et al. CRISPRI-based dynamic regulation of hydrolase for the synthesis of poly-γ-glutamic acid with variable molecular weights. ACS Synthetic Biology, 2020,9(9):2450-2459.
doi: 10.1021/acssynbio.0c00207 pmid: 32794764
[1] BU Kai-xuan,ZHOU Cui-xia,LU Fu-ping,ZHU Chuan-he. Research on the Regulation Mechanism of Bacterial Transcription Initiation[J]. China Biotechnology, 2021, 41(11): 89-99.
[2] XUAN Mei-juan,ZHANG Xiao-yun,GAO Ying,Li-GAO Ying,WU Jia-jing,MA Mei,WANG Yan-mei,KOU Hang,LU Fu-ping,LI Ming. Characterization of Promoters in the Glycolytic Pathway and Tricarboxylic Acid Cycle of E. coli and Its Application[J]. China Biotechnology, 2020, 40(6): 20-30.
[3] HU Yi-bo,PI Chang-yu,ZHANG Zhe,XIANG Bo-yu,XIA Li-qiu. Recent Advances in Protein Expression System of Filamentous Fungi[J]. China Biotechnology, 2020, 40(5): 94-104.
[4] SHI Chao-shuo,LI Deng-ke,CAO Xue,YUAN Hang,ZHANG Yu-wen,YU Jiang-yue,LU Fu-ping LI Yu. The Effect on Heterologous Expression of Alkaline Protease AprE by Two Different Promoter and Combinatorial[J]. China Biotechnology, 2019, 39(10): 17-23.
[5] HUANG Yu,HUANG Shu-ting,ZHANG Xi-mei,LIU Yan. Cloning and Functional Analysis of the Promoter of HSP70 Gene in Gobiocypris rarus[J]. China Biotechnology, 2019, 39(10): 9-16.
[6] Ya-fang LI,Ying-hui ZHAO,Sai-bao LIU,Wei WANG,Wei-jun ZENG,Jin-quan WANG,Hong-yan CHEN,Qing-wen MENG. Chicken OV Promoter Expressed HA to Protect Chickens from Lethal Challenge of AIV[J]. China Biotechnology, 2018, 38(7): 67-74.
[7] Jia-zhen WANG,Lun-guang YAO,Feng WANG,Yun-chao KAN,Jin-ping LUO,Qian-qian HUANG,Jian-ping DUAN. Cloning and Activity Analysis of a Midgut-specific Promoter in Silkworm (Bombyx mori)[J]. China Biotechnology, 2018, 38(2): 13-17.
[8] ZHANG Ling,WANG Nan,JIN Lv-hua,LIN Rong,YANG Hai-lin. To Promote the Expression of Leucine Dehydrogenase in Bacillus subtilis via Dual-Promoter and Fermentation Research[J]. China Biotechnology, 2018, 38(12): 21-31.
[9] Peng HUANG,Li-ping YAN,Ning ZHANG,Jin-lei SHI. Constitutive Expression of Human Goose-type Lysozyme 2 in Pichia pastoris Using the GAP Promoter[J]. China Biotechnology, 2018, 38(10): 55-63.
[10] Wen-juan CHAI,Qi YANG,Guo-jing LI,Rui-gang WANG. CiMYB15 from Caragana Intermedia Positively Regulates Flavonoids Metabolism of Arabidopsis[J]. China Biotechnology, 2018, 38(10): 8-19.
[11] NIE Yong-qiang, MA Hai-yan, MA Qing-wen. An in vivo Robust System for Generation of Site-specific Integration Minicircle DNA Vector[J]. China Biotechnology, 2017, 37(7): 80-87.
[12] XIA Hui, LIU Lei, WANG Xiu, SHEN Yan-qiu, GUO Yu-lun, LIANG Dong. Research on Stress-inducible Expression Characteristics of Sorbitol-6- phosphate Dehydrogenase Promoter from Apple[J]. China Biotechnology, 2017, 37(6): 50-55.
[13] NI Xuan, GAO Jin-xin, YU Chuan-jin, LIU Tong, LI Ya-qian, CHEN Jie. Bioinformatic Analysis and Promoter Identification of clt-1 Gene in Curvularia Lunata[J]. China Biotechnology, 2017, 37(3): 37-42.
[14] LUO Feng-xue, LI Fo-sheng, YAO Min, XU Ying. The Cloning and Transient Expression Analysis of Promoter of OsHAK26 from Oryza sativa[J]. China Biotechnology, 2017, 37(2): 33-39.
[15] CHEN Min, CHEN Hui, BAO Hai, HUANG Peng, WANG Yan-wei. Advances in the Research of miRNA Promoters in Plants[J]. China Biotechnology, 2016, 36(5): 125-131.