Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2021, Vol. 41 Issue (8): 110-119    DOI: 10.13523/j.cb.2103038
    
Research Strategy for Biosynthesis of Gamma Aminobutyric Acid
ZHANG Heng1,2,LIU Hui-yan1,2,PAN Lin1,2,WANG Hong-yan1,2,LI Xiao-fang1,2,WANG Tong1,2,FANG Hai-tian1,2,**()
1 School of Food and Wine, Ningxia University, Yinchuan 750021, China
2 Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, Ningxia University, Yinchuan 750021, China
Download: HTML   PDF(1704KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Gamma aminobutyric acid (GABA) is a kind of non-protein amino acid which is very soluble in water. It is widely used in food and pharmaceutical industry, and the market demand is very large. It can be produced by chemical synthesis, plant enrichment, microbial direct fermentation and biotransformation. In recent years, the synthesis of GABA by biological methods has its relative advantages, and has been paid attention by researchers. In this paper, the production methods of GABA, the microorganisms producing GABA, the key metabolic pathway of GABA synthesis and the directed transformation strategy of GAD enzyme were discussed.



Key wordsγ-Aminobutyric acid      Biosynthesis      Metabolic pathway      Directed transformation     
Received: 17 March 2021      Published: 31 August 2021
ZTFLH:  Q816  
Corresponding Authors: Hai-tian FANG     E-mail: fanght@nxu.edu.cn
Cite this article:

ZHANG Heng,LIU Hui-yan,PAN Lin,WANG Hong-yan,LI Xiao-fang,WANG Tong,FANG Hai-tian. Research Strategy for Biosynthesis of Gamma Aminobutyric Acid. China Biotechnology, 2021, 41(8): 110-119.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2103038     OR     https://manu60.magtech.com.cn/biotech/Y2021/V41/I8/110

Fig.1 The chemical structure formula of GABA
来源 生长条件 GAD特性 参考文献
最适温度/℃ 最适pH 最适温度/℃ 最适pH
大肠杆菌(细菌) 37 6.0~6.5 37 3.8~4.5 [14]
短乳杆菌(细菌) 37 5.5~6.0 50 4.0~4.5 [15]
酵母菌(真菌) 25 5.0~5.5 35 5.0~5.5 [16]
米曲霉(真菌 ) 30 6.0~6.5 40 5.0~5.5 [7]
Table 1 Growth conditions of microorganisms from different sources and GAD enzymatic characteristics
微生物 生产方法 底物 GABA产量/
(g/L)
参考文献
大肠杆菌
E.coli K-12 蛋白质支架固定GABA分流通路的关键酶,直接发酵 10 g/L的葡萄糖 1.08 [18]
E.coli BL21(DE3) E.coli K-12的GAD表达于E.coli BL2,全细胞转化 200 g/L的L-谷氨酸 138 [19]
E.coli BW25113 Lactococcus lactis的GAD定点突变后表达于E. coli BW25113。全细胞转化 441.39 g/L的L-谷
氨酸
307.4 [20]
E.coli XL1-Blue (XB) Thermococcus hordei的GAD异源表达于E.coli XL1-Blue (XB),直接发酵 10 g/L的味精 5.69 [21]
乳酸菌
L.plantarum UV43-7 诱变所得菌株,直接发酵 15 g/L的味精 4.003 [22]
L. plantarum CICC 6238 诱变所得菌株,直接发酵 15 g/L的味精 1.196±0.033 [23]
Lactobacillus paracasei 直接发酵 73.57 g/L的L-谷氨酸 31.11 [24]
谷氨酸棒杆菌
C.glutamicum ATCC
13032
E.coli K-12的GAD表达于C.glutamicum ATCC,直接发酵 50 g/L的葡萄糖 12 [25]
C.glutamicum ATCC
13032
L.plantarum GB01-21的 GAD定点突变后异源表达于C.glutamicum ATCC13032,全细胞转化 400 g/L的L-谷氨酸 116 [26]
Table 2 Methods and yield of GABA production by various microorganisms
Fig.2 GABA metabolic pathway and coding genes in Escherichia coli
Fig.3 Glutamate metabolism pathway in Corynebacterium glutamicum
Fig.4 PLP active center
Fig.5 gad B protein structure under acidic and neutral conditions (a)Conformation under neutral conditions (b)Conformation under acidic conditions
Fig.6 Interaction map of amino acid 62 with PLP before and after mutation (a)Before mutation (b)After mutation
[1]   方卉. 短乳杆菌谷氨酸脱羧酶活性中心关键位点的研究. 杭州: 浙江科技学院, 2019.
[1]   Fang H. Study on key sites of glutamate decarboxylase active center of Lactobacillus brevis. Hangzhou: Zhejiang University of Science & Technology, 2019.
[2]   蒋彤, 徐慧, 贾丽娜. γ-氨基丁酸的生理功能及其在食品中的应用研究进展. 粮食与油脂, 2020, 33(4):23-25.
[2]   Jiang T, Xu H, Jia L N. Research progress on the physiological function of γ-aminobutyric acid and its application in food. Cereals & Oils, 2020, 33(4):23-25.
[3]   Han M, Liao W Y, Wu S M, et al. Use of Streptococcus thermophilus for the in situ production of γ-aminobutyric acid-enriched fermented milk. Journal of Dairy Science, 2020, 103(1):98-105.
doi: 10.3168/jds.2019-16856
[4]   Shan Y, Man C X, Han X, et al. Evaluation of improved γ-aminobutyric acid production in yogurt using Lactobacillus plantarum NDC75017. Journal of Dairy Science, 2015, 98(4):2138-2149.
doi: 10.3168/jds.2014-8698 pmid: 25622870
[5]   宁亚维, 马梦戈, 杨正, 等. γ-氨基丁酸的制备方法及其功能食品研究进展. 食品与发酵工业, 2020, 46(23):238-247.
[5]   Ning Y W, Ma M G, Yang Z, et al. Research progress in the enrichment process and functional foods of γ-aminobutyric acid. Food and Fermentation Industries, 2020, 46(23):238-247.
[6]   Shekari A, Naghshiband Hassani R, Soleimani Aghdam M. Exogenous application of GABA retards cap browning in Agaricus bisporus and its possible mechanism. Postharvest Biology and Technology, 2021, 174:111434.
doi: 10.1016/j.postharvbio.2020.111434
[7]   王志超. 霉菌转化法合成γ-氨基丁酸的研究. 济南: 齐鲁工业大学, 2016.
[7]   Wang Z C. The research of γ-aminobutyric acid synthesized by mold transformation. Jinan: Qilu University of Technology, 2016.
[8]   孙磊, 王苑, 柏映国, 等. 谷氨酸脱羧酶结构及催化机制的研究概述. 微生物学通报, 2020, 47(7):2236-2244.
[8]   Sun L, Wang Y, Bai Y G, et al. Structure and catalytic mechanism of glutamate decarboxylase: a review. Microbiology China, 2020, 47(7):2236-2244.
[9]   金敏. 玉米多组织初级代谢遗传结构解析. 武汉, 华中农业大学, 2020.
[9]   Jin M. Analysis of the genetic structure of primary metabolism in maize. Wuhan: Huazhong Agricultural University, 2020.
[10]   Gut H, Dominici P, Pilati S, et al. A common structural basis for pH- and calmodulin-mediated regulation in plant glutamate decarboxylase. Journal of Molecular Biology, 2009, 392(2):334-351.
doi: 10.1016/j.jmb.2009.06.080
[11]   Sarasa S B, Mahendran R, Muthusamy G, et al. A brief review on the non-protein amino acid, gamma-amino butyric acid (GABA): Its production and role in microbes. Current Microbiology, 2020, 77(4):534-544.
doi: 10.1007/s00284-019-01839-w pmid: 31844936
[12]   王斌, 丁俊胄, 贾才华, 等. 环境胁迫植物富集γ-氨基丁酸的研究进展. 食品工业科技, 2018, 39(18):342-346, 352.
[12]   Wang B, Ding J Z, Jia C H, et al. Research progress on enrichment ofγ-aminobutyric acid in plants under environmental stress. Science and Technology of Food Industry, 2018, 39(18):342-346, 352.
[13]   侯亚男, 冯昆. 中药微生物转化研究进展. 云南中医中药杂志, 2019, 40(12):66-69.
[13]   Hou Y N, Feng K. Progress in microbial transformation of Traditional Chinese Medicine. Yunnan Journal of Traditional Chinese Medicine and Materia Medica, 2019, 40(12):66-69.
[14]   Capitani G, De Biase D, Aurizi C, et al. Crystal structure and functional analysis of Escherichia coli glutamate decarboxylase. The EMBO Journal, 2003, 22(16):4027-4037.
doi: 10.1093/emboj/cdg403
[15]   李佑新. 短乳杆菌谷氨酸脱羧酶在谷氨酸棒杆菌中的表达和γ-氨基丁酸的生物合成. 无锡: 江南大学, 2012.
[15]   Li Y X. Expression of Lactobacillus brevis glutamate decarboxylase and synthesis of γ-aminobutyric acid in Corynebacterium glutamicum. Wuxi: Jiangnan University, 2012.
[16]   李杰. 生物合成γ-氨基丁酸酵母菌谷氨酸脱羧酶基因的克隆及表达. 金华: 浙江师范大学, 2009.
[16]   Li J. Molecular cloning and expression of the glutamic acid decarboxylase gene from Saccharomyces cerevisiae for biosynthesis of γ-amino butyric acid. Jinhua: Zhejiang Normal University, 2009.
[17]   李文强, 刘洋, 唐荣兴, 等. 全细胞生物转化法制备γ-氨基丁酸. 湖北大学学报(自然科学版), 2019, 41(1):5-9.
[17]   Li W Q, Liu Y, Tang R X, et al. Preparation of γ-aminobutyric acid using whole-cell biotransformation. Journal of Hubei University (Natural Science), 2019, 41(1):5-9.
[18]   Pham V, Somasundaram S, Lee S H, et al. Efficient production of gamma-aminobutyric acid using Escherichia coli by co-localization of glutamate synthase, glutamate decarboxylase, and GABA transporter. Journal of Industrial Microbiology & Biotechnology, 2016, 43(1):79-86.
[19]   Plokhov A Y, Gusyatiner M M, Yampolskaya T A, et al. Preparation of γ-aminobutyric acid using E. coli cells with high activity of glutamate decarboxylase. Applied Biochemistry and Biotechnology, 2000, 88(1-3):257-265.
doi: 10.1385/ABAB:88:1-3
[20]   Yang X W, Ke C R, Zhu J M, et al. Enhanced productivity of gamma-amino butyric acid by cascade modifications of a whole-cell biocatalyst. Applied Microbiology and Biotechnology, 2018, 102(8):3623-3633.
doi: 10.1007/s00253-018-8881-0
[21]   Vo T D L, Pham V D, Ko J S, et al. Improvement of gamma-amino butyric acid production by an overexpression of glutamate decarboxylase from Pyrococcus horikoshii in Escherichia coli. Biotechnology and Bioprocess Engineering, 2014, 19(2):327-331.
doi: 10.1007/s12257-013-0713-6
[22]   田蕊. 产γ-氨基丁酸乳酸菌的筛选鉴定、紫外诱变及发酵条件优化. 呼和浩特: 内蒙古农业大学, 2018.
[22]   Tian R. Screening, identification, UV mutagenesis and fermentation conditions optimization of γ-aminobutyric acid by Lactobacillus. Hohhot: Inner Mongolia Agricultural University, 2018.
[23]   史晓萌, 陈建国, 李生有, 等. 产γ-氨基丁酸乳酸菌CICC 6238的诱变选育及益生特性分析. 食品与发酵工业, 2018, 44(8):71-77.
[23]   Shi X M, Chen J G, Li S Y, et al. Mutation breeding of Lactobacillus plantarum CICC 6238 for γ-aminobutyric acid production and analysis of probiotic properties. Food and Fermentation Industries, 2018, 44(8):71-77.
[24]   Komatsuzaki N, Jun S M, Kawamoto S, et al. Production of γ-aminobutyric acid (GABA) by Lactobacillus paracasei isolated from traditional fermented foods. Food Microbiology, 2005, 22(6):497-504.
doi: 10.1016/j.fm.2005.01.002
[25]   Takahashi C, Shirakawa J, Tsuchidate T, et al. Robust production of gamma-amino butyric acid using recombinant Corynebacterium glutamicum expressing glutamate decarboxylase from Escherichia coli. Enzyme and Microbial Technology, 2012, 51(3):171-176.
doi: 10.1016/j.enzmictec.2012.05.010 pmid: 22759537
[26]   饶志明. 一种pH稳定性提高的谷氨酸脱羧酶突变体及其应用: 中国, CN105296456A 2016-02-03[2021-03-14]. https://www.cnki.net/
[26]   Rao Z M. A glutamate decarboxylase mutant with improved pH stability and application thereof: China, CN105296456A, 2016-02-03[2021-03-14]. https://www.cnki.net/
[27]   张耀, 邱晓曼, 陈程鹏, 等. 生物法制造丁二酸研究进展. 化工学报, 2020, 71(5):1964-1975.
[27]   Zhang Y, Qiu X M, Chen C P, et al. Recent progress in microbial production of succinic acid. CIESC Journal, 2020, 71(5):1964-1975.
[28]   Yu P, Ren Q, Wang X X, et al. Enhanced biosynthesis of γ-aminobutyric acid (GABA) in Escherichia coli by pathway engineering. Biochemical Engineering Journal, 2019, 141:252-258.
doi: 10.1016/j.bej.2018.10.025
[29]   Pham V D, Somasundaram S, Lee S H, et al. Engineering the intracellular metabolism of Escherichia coli to produce gamma-aminobutyric acid by co-localization of GABA shunt enzymes. Biotechnology Letters, 2016, 38(2):321-327.
doi: 10.1007/s10529-015-1982-2
[30]   温经柏. 代谢工程改造谷氨酸棒状杆菌发酵生产纤维素谷氨酸和γ-氨基丁酸. 上海: 华东理工大学, 2019.
[30]   Wen J B. Metabolic engineering of Corynebacterium glutamicum for cellulosic glutamic acid and γ-aminobutyric acid fermentation. Shanghai: East China University of Science and Technology, 2019.
[31]   Shirai T, Fujimura K, Furusawa C, et al. Study on roles of anaplerotic pathways in glutamate overproduction of Corynebacterium glutamicum by metabolic flux analysis. Microbial Cell Factories, 2007, 6:19.
doi: 10.1186/1475-2859-6-19
[32]   Wang N N, Ni Y L, Shi F. Deletion of odhA or pyc improves production of γ-aminobutyric acid and its precursor l-glutamate in recombinant Corynebacterium glutamicum. Biotechnology Letters, 2015, 37(7):1473-1481.
doi: 10.1007/s10529-015-1822-4
[33]   Niebisch A, Kabus A, Schultz C, et al. Corynebacterial protein kinase G controls 2-oxoglutarate dehydrogenase activity via the phosphorylation status of the OdhI protein. Journal of Biological Chemistry, 2006, 281(18):12300-12307.
pmid: 16522631
[34]   Schultz C, Niebisch A, Gebel L, et al. Glutamate production by Corynebacterium glutamicum: dependence on the oxoglutarate dehydrogenase inhibitor protein OdhI and protein kinase PknG. Applied Microbiology and Biotechnology, 2007, 76(3):691-700.
doi: 10.1007/s00253-007-0933-9
[35]   Okai N, Takahashi C, Hatada K, et al. Disruption of pknG enhances production of gamma-aminobutyric acid by Corynebacterium glutamicum expressing glutamate decarboxylase. AMB Express, 2014, 4:20.
doi: 10.1186/s13568-014-0020-4
[36]   Shi F, Zhang M, Li Y F. Overexpression of ppc or deletion of mdh for improving production of γ-aminobutyric acid in recombinant Corynebacterium glutamicum. World Journal of Microbiology and Biotechnology, 2017, 33(6):1-8.
doi: 10.1007/s11274-016-2144-y
[37]   Shi F, Li Y X. Synthesis of γ-aminobutyric acid by expressing Lactobacillus brevis-derived glutamate decarboxylase in the Corynebacterium glutamicum strain ATCC 13032. Biotechnology Letters, 2011, 33(12):2469-2474.
doi: 10.1007/s10529-011-0723-4
[38]   Delaunay S, Daran-Lapujade P, Engasser J M, et al. Glutamate as an inhibitor of phosphoenolpyruvate carboxylase activity in Corynebacterium glutamicum. Journal of Industrial Microbiology and Biotechnology, 2004, 31(4):183-188.
doi: 10.1007/s10295-004-0137-6
[39]   Wada M, Sawada K, Ogura K, et al. Effects of phosphoenolpyruvate carboxylase desensitization on glutamic acid production in Corynebacterium glutamicum ATCC 13032. Journal of Bioscience and Bioengineering, 2016, 121(2):172-177.
doi: 10.1016/j.jbiosc.2015.06.008
[40]   Wen J B, Xiao Y Q, Liu T, et al. Rich biotin content in lignocellulose biomass plays the key role in determining cellulosic glutamic acid accumulation by Corynebacterium glutamicum. Biotechnology for Biofuels, 2018, 11:132.
doi: 10.1186/s13068-018-1132-x
[41]   Zhang R Z, Yang T W, Rao Z M, et al. Efficient one-step preparation of γ-aminobutyric acid from glucose without an exogenous cofactor by the designed Corynebacterium glutamicum. Green Chem, 2014, 16(9):4190-4197.
doi: 10.1039/C4GC00607K
[42]   吕红芳, 王浩, 徐宁, 等. 外源精氨酸对谷氨酸棒杆菌在高葡萄糖胁迫下生长和发酵特性的影响. 微生物学通报, 2017, 44(11):2539-2546.
[42]   Lü H F, Wang H, Xu N, et al. Effects of exogenous arginine on the growth and fermentation performance of Corynebacterium glutamicum under high glucose stress. Microbiology China, 2017, 44(11):2539-2546.
[43]   Kataoka M, Hashimoto K I, Yoshida M, et al. Gene expression of Corynebacterium glutamicum in response to the conditions inducing glutamate overproduction. Letters in Applied Microbiology, 2006, 42(5):471-476.
pmid: 16620205
[44]   Shi F, Xie Y L, Jiang J J, et al. Directed evolution and mutagenesis of glutamate decarboxylase from Lactobacillus brevis Lb85 to broaden the range of its activity toward a near-neutral pH. Enzyme and Microbial Technology, 2014, 61-62:35-43.
doi: 10.1016/j.enzmictec.2014.04.012
[45]   Shi F, Luan M Y, Li Y F. Ribosomal binding site sequences and promoters for expressing glutamate decarboxylase and producing γ-aminobutyrate in Corynebacterium glutamicum. AMB Express, 2018, 8(1):1-17.
doi: 10.1186/s13568-017-0531-x
[46]   江正强. 获得定向突变基因的方法和基于其发现的酸性β-1,3-1,4-葡聚糖酶: 中国, CN103045560A, 2013-04-17[2021-03-14]=. https://www.cnki.net/
[46]   Jiang Z Q. Method for obtaining targeted mutation gene and acid β-1,3-1,4-glucanase based on its discovery: China(Beijing), CN103045560A, 2013-04-17[2021-03-14]=. https://www.cnki.net/
[47]   Yokoyama S, Hiramatsu J I, Hayakawa K. Production of gamma-aminobutyric acid from alcohol distillery lees by Lactobacillus brevis IFO-12005. Journal of Bioscience and Bioengineering, 2002, 93(1):95-97.
pmid: 16233172
[48]   Jun C H, Joo J C, Lee J H, et al. Thermostabilization of glutamate decarboxylase B from Escherichia coli by structure-guided design of its pH-responsive N-terminal interdomain. Journal of Biotechnology, 2014, 174:22-28.
doi: 10.1016/j.jbiotec.2014.01.020
[49]   Astegno A, Capitani G, Dominici P. Functional roles of the hexamer organization of plant glutamate decarboxylase. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 2015, 1854(9):1229-1237.
[50]   林玲, 胡升, 郁凯, 等. 饱和定点突变拓宽谷氨酸脱羧酶催化pH范围的研究. 高校化学工程学报, 2014, 28(6):1410-1414.
[50]   Lin L, Hu S, Yu K, et al. Expanding the active p H range of Lactobacillus brevis glutamate decarboxylase by saturation mutagenesis. Journal of Chemical Engineering of Chinese Universities, 2014, 28(6):1410-1414.
[51]   Ho N A T, Hou C Y, Kim W H, et al. Expanding the active pH range of Escherichia coli glutamate decarboxylase by breaking the cooperativeness. Journal of Bioscience and Bioengineering, 2013, 115(2):154-158.
doi: 10.1016/j.jbiosc.2012.09.002
[52]   John R A. Pyridoxal phosphate-dependent enzymes. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, 1995, 1248(2):81-96.
doi: 10.1016/0167-4838(95)00025-P
[53]   韩啸, 于雷雷, 翟齐啸, 等. 短乳杆菌和植物乳杆菌产γ-氨基丁酸及其关键基因的研究. 食品与发酵工业, 2019, 45(13):1-8.
[53]   Han X, Yu L L, Zhai Q X, et al. Production of γ-aminobutyric acid by Lactobacillus brevis and Lactobacillus plantarum and key relevant genes analysis. Food and Fermentation Industries, 2019, 45(13):1-8.
[54]   郭玉杰, 涂涛, 邱锦, 等. 篮状菌Talaromyces leycettanus JCM12802来源的高温葡萄糖淀粉酶性质与结构. 生物工程学报, 2019, 35(4):616-625.
[54]   Guo Y J, Tu T, Qiu J, et al. Properties and structure of high temperature glucoamylase derived from Talaromyces leycettanus JCM12802. Chinese Journal of Biotechnology, 2019, 35(4):616-625.
[1] MIAO Yi-nan,LI Jing-zhi,WANG Shuai,LI Chun,WANG Ying. Research Progress of Key Enzymes in Terpene Biosynthesis[J]. China Biotechnology, 2021, 41(6): 60-70.
[2] LI Bing,ZHANG Chuan-bo,SONG Kai,LU Wen-yu. Research Progress in Biosynthesis of Rare Ginsenosides[J]. China Biotechnology, 2021, 41(6): 71-88.
[3] ZHAI Jun-ye,CHENG Xu,SUN Ze-min,LI Chun,LV Bo. Current Advances in Biosynthesis of Acteoside[J]. China Biotechnology, 2021, 41(5): 94-104.
[4] WANG Guang-lu, WANG Meng-yuan, ZHOU Yi-fei, MA Ke, ZHANG Fan, YANG Xue-peng. Research Progress in Pyrrologuinoline Quinone Biosynthesis[J]. China Biotechnology, 2021, 41(1): 103-113.
[5] GUO Er-peng, ZHANG Jian-zhi, SI Tong. Recent Advances in the High-throughput Engineering of Lanthipeptides[J]. China Biotechnology, 2021, 41(1): 30-41.
[6] LIU Xiao-chen, FAN Dai-di, YANG Fan, WU Zhan-sheng. Advances in Microbial Production of Ginsenoside and Its Derivatives[J]. China Biotechnology, 2021, 41(1): 80-93.
[7] DUAN Hai-rong,WEI Sai-jin,LI Xun-hang. Advances in Rhamnolipid Biosynthesis by Pseudomonas aeruginosa Research[J]. China Biotechnology, 2020, 40(9): 43-51.
[8] DENG Ting-shan,WU Guo-gan,SUN Yu,TANG Xue-ming. Advances in Biosynthesis of Phenyllactic Acid[J]. China Biotechnology, 2020, 40(9): 62-68.
[9] YAN Wei-huan,HUANG Tong,HONG Jie-fang,MA Yuan-yuan. Recent Advances in Butanol Biosynthesis of Escherichia coli[J]. China Biotechnology, 2020, 40(9): 69-76.
[10] Meng-ying OU,Xiao-zheng WANG,Shuang-jun LIN,Tong-wei GUAN,Yi-jin LIN. A Review of Studies on Streptonigrin[J]. China Biotechnology, 2019, 39(7): 100-107.
[11] Shuo XU,Wen-yu LU. Progress of Heterologous Biosynthesis of Terpenoids in Engineered Corynebacterium glutamicum[J]. China Biotechnology, 2019, 39(6): 91-96.
[12] Si-li YU,Xue LIU,Zhao-yu ZHANG,Hong-jian YU,Guang-rong ZHAO. Advances of Betalains Biosynthesis and Metabolic Regulation[J]. China Biotechnology, 2018, 38(8): 84-91.
[13] ZHANG Ya-guang, ZHANG Chuan-bo, LU Wen-yu. Progress of Biosynthesis of Sophorolipids and Its Derivatives Production in Starmerella bombicola[J]. China Biotechnology, 2017, 37(9): 134-140.
[14] GAO Hong-jiang, LI Sheng-yan, WANG Hai, LIN Feng, ZHANG Chun-yu, LANG Zhi-hong. Progress on Function and Biosynthesis of Benzoxazinoids[J]. China Biotechnology, 2017, 37(8): 104-109.
[15] ZHENG Tian-xiang, QIAN Yu-nong, ZHANG Da-yu. Key Genes Involved in Fatty Acids Biosynthesis in Insects[J]. China Biotechnology, 2017, 37(11): 19-27.