Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2021, Vol. 41 Issue (5): 72-78    DOI: 10.13523/j.cb.2012041
    
Advances in the Regulation of Receptor Tyrosine Kinase on Autophagy
DONG Xue-ying1,2,LIANG Kai1,2,YE Ke-ying3,ZHOU Ce-fan1,2,**(),TANG Jing-feng1,2,**()
1 School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
2 HBUT National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
3 Animal, Plant and Food Inspection and Quarantine Office, Chengdu Customs, Sichuan, Chengdu 610041, China
Download: HTML   PDF(445KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Autophagy is a very conservative biological process of lysosomal degradation in eukaryotic evolution, which plays an important role in maintaining cell homeostasis and eliminating harmful components. Receptor tyrosine kinases (RTKs) are a class of kinase proteins that play an important role in the movement and invasion of normal cells and cancer cells. RTKs protein can not only promote autophagy, but also inhibit autophagy. Studies have shown that RTKs can play a regulatory role in tumors and related diseases through autophagy. For example, epidermal growth factor receptor (EGFR) can inhibit autophagy, thereby promoting tumor growth and proliferation; it can also pass RTK/Ras/ERK signaling pathways to induce autophagy, which in turn participates in related diseases such as cellular immune responses. The regulatory effects of RTKs on autophagy and related research results, which provide a basis for the theoretical basis of target targeted therapy were reviewed.



Key wordsAutophagy      Receptor tyrosine kinase family      Cancer      Degenerative diseases      Resistance     
Received: 23 December 2020      Published: 01 June 2021
ZTFLH:  Q814  
Corresponding Authors: Ce-fan ZHOU,Jing-feng TANG     E-mail: cefan@whu.edu.com;tangjingfeng@hbut.edu.com
Cite this article:

DONG Xue-ying,LIANG Kai,YE Ke-ying,ZHOU Ce-fan,TANG Jing-feng. Advances in the Regulation of Receptor Tyrosine Kinase on Autophagy. China Biotechnology, 2021, 41(5): 72-78.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2012041     OR     https://manu60.magtech.com.cn/biotech/Y2021/V41/I5/72

RTKs 与自噬关系及其机制 相关疾病 生理影响及其研究进展
EphB2 异位表达时的自磷酸化和侵袭功能来促进自噬 胃癌、结肠癌、宫颈癌等 降低肿瘤细胞侵袭性,与神经性疾病具有相关性
TrkA ROS积累促进自噬 神经退行性疾病等 与自噬相关,但通过自噬对肿瘤的影响研究较少
AXL 与配体相互作用,自磷酸化诱导自噬 乳腺癌、肺癌、脑肿瘤等 调节癌症发生、发展
EGFR EGFR磷酸化,抑制Beclin1,抑制自噬 肺癌、胰腺癌、头颈癌等 通过自噬促进肿瘤生长,但对其抑制剂耐药研究较少
VEGF VEGF导致相关FOXO转录因子缺乏来抑制自噬 结直肠癌、心血管疾病等 可促进肿瘤血管生成来促进肿瘤扩散
FGFR1 FGFR1磷酸化或二聚化抑制自噬 乳腺癌、前列腺癌、肺鳞癌等 可促进癌症发生,其抑制剂已广泛应用于临床
Table 1 The regulation mechanism of RTKs on autophagy and its research progress
[1]   Ho C J, Gorski S M. Molecular mechanisms underlying autophagy-mediated treatment resistance in cancer. Cancers, 2019,11(11):1775.
doi: 10.3390/cancers11111775
[2]   Noda N N, Fujioka Y. Atg1 family kinases in autophagy initiation. Cellular and Molecular Life Sciences, 2015,72(16):3083-3096.
doi: 10.1007/s00018-015-1917-z
[3]   Amaya C, Fader C M, Colombo M I. Autophagy and proteins involved in vesicular trafficking. FEBS Letters, 2015,589(22):3343-3353.
doi: 10.1016/j.febslet.2015.09.021
[4]   Itakura E, Mizushima N. Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins. Autophagy, 2010,6(6):764-776.
pmid: 20639694
[5]   Xie Z P, Nair U, Klionsky D J. Atg8 controls phagophore expansion during autophagosome formation. Molecular Biology of the Cell, 2008,19(8):3290-3298.
doi: 10.1091/mbc.e07-12-1292
[6]   Reggiori F, Tooze S A. Autophagy regulation through Atg9 traffic. Journal of Cell Biology, 2012,198(2):151-153.
[7]   Lemmon M A, Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell, 2010,141(7):1117-1134.
doi: 10.1016/j.cell.2010.06.011 pmid: 20602996
[8]   Trenker R, Jura N. Receptor tyrosine kinase activation: From the ligand perspective. Current Opinion in Cell Biology, 2020,63:174-185.
doi: 10.1016/j.ceb.2020.01.016
[9]   Fraser J, Cabodevilla A G, Simpson J, et al. Interplay of autophagy, receptor tyrosine kinase signalling and endocytic trafficking. Essays in Biochemistry, 2017,61(6):597-607.
doi: 10.1042/EBC20170091 pmid: 29233871
[10]   Lampada A, Hochhauser D, Salomoni P. Autophagy and receptor tyrosine kinase signalling: a mTORC2 matter. Cell Cycle, 2017,16(20):1855-1856.
doi: 10.1080/15384101.2017.1372548
[11]   Chukkapalli S, Amessou M, Dilly A K, et al. Role of the EphB2 receptor in autophagy, apoptosis and invasion in human breast cancer cells. Experimental Cell Research, 2014,320(2):233-246.
doi: 10.1016/j.yexcr.2013.10.022 pmid: 24211352
[12]   Kandouz M, Haidara K, Zhao J, et al. The EphB2 tumor suppressor induces autophagic cell death via concomitant activation of the ERK1/2 and PI3K pathways. Cell Cycle, 2010,9(2):398-407.
doi: 10.4161/cc.9.2.10505
[13]   Tanabe H, Kuribayashi K, Tsuji N, et al. Sesamin induces autophagy in colon cancer cells by reducing tyrosine phosphorylation of EphA1 and EphB2. International Journal of Oncology, 2011,39(1):33-40.
[14]   Zhong S Z, Pei D, Shi L, et al. Ephrin-B2 inhibits Aβ25-35-induced apoptosis by alleviating endoplasmic reticulum stress and promoting autophagy in HT22 cells. Neuroscience Letters, 2019,704:50-56.
doi: 10.1016/j.neulet.2019.03.028
[15]   Singh R, Karri D, Shen H, et al. TRAF4-mediated ubiquitination of NGF receptor TrkA regulates prostate cancer metastasis. The Journal of Clinical Investigation, 2018,128(7):3129-3143.
doi: 10.1172/JCI96060
[16]   Molloy N H, Read D E, Gorman A M. Nerve growth factor in cancer cell death and survival. Cancers, 2011,3(1):510-530.
doi: 10.3390/cancers3010510 pmid: 24212627
[17]   Dadakhujaev S, Jung E J, Noh H S, et al. Interplay between autophagy and apoptosis in TrkA-induced cell death. Autophagy, 2009,5(1):103-105.
doi: 10.4161/auto.5.1.7276
[18]   Dadakhujaev S, Noh H S, Jung E J, et al. The reduced catalase expression in TrkA-induced cells leads to autophagic cell death via ROS accumulation. Experimental Cell Research, 2008,314(17):3094-3106.
doi: 10.1016/j.yexcr.2008.08.013
[19]   Koorstra J B M, Karikari C, Feldmann G, et al. The Axl receptor tyrosine kinase confers an adverse prognostic influence in pancreatic cancer and represents a new therapeutic target. Cancer Biology & Therapy, 2009,8(7):618-626.
[20]   Colavito S A. AXL as a target in breast cancer therapy. Journal of Oncology, 2020,2020:5291952.
[21]   Neubauer A, O’Bryan J P, Fiebeler A, et al. Axl, a novel receptor tyrosine kinase isolated from chronic myelogenous leukemia. Seminars in Hematology, 1993,30(3 Suppl 3):34.
[22]   Paccez J D, Vogelsang M, Parker M I, et al. The receptor tyrosine kinase Axl in cancer: biological functions and therapeutic implications. International Journal of Cancer, 2014,134(5):1024-1033.
doi: 10.1002/ijc.v134.5
[23]   Holland S J, Pan A, Franci C, et al. R428, a selective small molecule inhibitor of Axl kinase, blocks tumor spread and prolongs survival in models of metastatic breast cancer. Cancer Research, 2010,70(4):1544-1554.
doi: 10.1158/0008-5472.CAN-09-2997 pmid: 20145120
[24]   Vajkoczy P, Knyazev P, Kunkel A, et al. Dominant-negative inhibition of the Axl receptor tyrosine kinase suppresses brain tumor cell growth and invasion and prolongs survival. Proceedings of the National Academy of Sciences of the United States of America, 2006,103(15):5799-5804.
[25]   Han J, Bae J, Choi C Y, et al. Autophagy induced by AXL receptor tyrosine kinase alleviates acute liver injury via inhibition of NLRP3 inflammasome activation in mice. Autophagy, 2016,12(12):2326-2343.
doi: 10.1080/15548627.2016.1235124
[26]   Lee C H, Chun T. Anti-inflammatory role of TAM family of receptor tyrosine kinases via modulating macrophage function. Molecules and Cells, 2019,42(1):1-7.
[27]   Han W D, Pan H M, Chen Y, et al. EGFR tyrosine kinase inhibitors activate autophagy as a cytoprotective response in human lung cancer cells. PLoS One, 2011,6(6):e18691.
doi: 10.1371/journal.pone.0018691
[28]   Wei Y J, Zou Z J, Becker N, et al. EGFR-mediated beclin 1 phosphorylation in autophagy suppression, tumor progression, and tumor chemoresistance. Cell, 2013,154(6):1269-1284.
doi: 10.1016/j.cell.2013.08.015
[29]   So K S, Kim C H, Rho J K, et al. Autophagosome-mediated EGFR down-regulation induced by the CK2 inhibitor enhances the efficacy of EGFR-TKI on EGFR-mutant lung cancer cells with resistance by T790M. PLoS One, 2014,9(12):e114000.
doi: 10.1371/journal.pone.0114000
[30]   Wang R C, Wei Y, An Z, et al. Akt-mediated regulation of autophagy and tumorigenesis through beclin 1 phosphorylation. Science, 2012,338(6109):956-959.
doi: 10.1126/science.1225967
[31]   Kwon Y, Kim M, Jung H S, et al. Targeting autophagy for overcoming resistance to anti-EGFR treatments. Cancers, 2019,11(9):1374.
doi: 10.3390/cancers11091374
[32]   Domigan C K, Warren C M, Antanesian V, et al. Autocrine VEGF maintains endothelial survival through regulation of metabolism and autophagy. Journal of Cell Science, 2015,128(12):2236-2248.
doi: 10.1242/jcs.163774
[33]   Lee S, Chen T T, Barber C L, et al. Autocrine VEGF signaling is required for vascular homeostasis. Cell, 2007,130(4):691-703.
doi: 10.1016/j.cell.2007.06.054
[34]   Warr M R, Binnewies M, Flach J, et al. FOXO3A directs a protective autophagy program in haematopoietic stem cells. Nature, 2013,494(7437):323-327.
doi: 10.1038/nature11895
[35]   Spengler K, Kryeziu N, Groβe S, et al. VEGF triggers transient induction of autophagy in endothelial cells via AMPKα1. Cells, 2020,9(3):687.
doi: 10.3390/cells9030687
[36]   Chen C H, Liu Y M, Pan S L, et al. Trichlorobenzene-substituted azaaryl compounds as novel FGFR inhibitors exhibiting potent antitumor activity in bladder cancer cells in vitro and in vivo. Oncotarget, 2016,7(18):26374-26387.
doi: 10.18632/oncotarget.v7i18
[37]   Dieci M V, Arnedos M, Andre F, et al. Fibroblast growth factor receptor inhibitors as a cancer treatment: from a biologic rationale to medical perspectives. Cancer Discovery, 2013,3(3):264-279.
doi: 10.1158/2159-8290.CD-12-0362
[38]   Du Z F, Lovly C M. Mechanisms of receptor tyrosine kinase activation in cancer. Molecular Cancer, 2018,17(1):1-13.
doi: 10.1186/s12943-017-0753-1
[39]   Lampada A, O’Prey J, Szabadkai G, et al. mTORC1-independent autophagy regulates receptor tyrosine kinase phosphorylation in colorectal cancer cells via an mTORC2-mediated mechanism. Cell Death & Differentiation, 2017,24(6):1045-1062.
[40]   Wu M, Zhang P H. EGFR-mediated autophagy in tumourigenesis and therapeutic resistance. Cancer Letters, 2020,469:207-216.
doi: 10.1016/j.canlet.2019.10.030
[41]   Zhou C F, Qian X H, Hu M, et al. STYK1 promotes autophagy through enhancing the assembly of autophagy-specific class III phosphatidylinositol 3-kinase complex I. Autophagy, 2020,16(10):1786-1806.
doi: 10.1080/15548627.2019.1687212
[42]   Huang Z, Ma N, Xiong Y L, et al. Aberrantly high expression of NOK/STYK1 is tightly associated with the activation of the AKT/GSK3β/N-cadherin pathway in non-small cell lung cancer. OncoTargets and Therapy, 2019,12:10299-10309.
doi: 10.2147/OTT.S210014 pmid: 31819514
[43]   Meng X R, Wang H J, Zhao J Z, et al. Apatinib inhibits cell proliferation and induces autophagy in human papillary thyroid carcinoma via the PI3K/Akt/mTOR signaling pathway. Frontiers in Oncology, 2020,10:217.
doi: 10.3389/fonc.2020.00217
[44]   Tao J Y, Sun D T, Hou H L. Role of YES1 amplification in EGFR mutation-positive non-small cell lung cancer: Primary resistance to afatinib in a patient. Thoracic Cancer, 2020,11(9):2736-2739.
doi: 10.1111/tca.v11.9
[45]   Curry D W, Stutz B, Andrews Z B, et al. Targeting AMPK signaling as a neuroprotective strategy in Parkinson’s disease. Journal of Parkinson’s Disease, 2018,8(2):161-181.
[46]   Vernizzi L, Paiardi C, Licata G, et al. Glutamine synthetase 1 increases autophagy lysosomal degradation of mutant huntingtin aggregates in neurons, ameliorating motility in a Drosophila model for Huntington’s disease. Cells, 2020,9(1):196.
doi: 10.3390/cells9010196
[47]   Forloni G, Balducci C. Alzheimer’s disease, oligomers, and inflammation. Journal of Alzheimer’s Disease, 2018,62(3):1261-1276.
[48]   Sun B L, Li W W, Zhu C, et al. Clinical research on Alzheimer’s disease: progress and perspectives. Neuroscience Bulletin, 2018,34(6):1111-1118.
doi: 10.1007/s12264-018-0249-z
[49]   Zou L, Wang Z, Shen L, et al. Receptor tyrosine kinases positively regulate BACE activity and Amyloid-beta production through enhancing BACE internalization. Cell Research, 2007,17(5):389-401.
doi: 10.1038/cr.2007.5
[50]   Frisardi V, Santamato A, Cheeran B. Parkinson’s disease: new insights into pathophysiology and rehabilitative approaches. Parkinson’s Disease, 2016,2016:1-2.
[51]   Chittoor-Vinod V G, Villalobos-Cantor S, Roshak H, et al. Dietary amino acids impact LRRK2-induced neurodegeneration in Parkinson’s disease models. The Journal of Neuroscience, 2020,40(32):6234-6249.
doi: 10.1523/JNEUROSCI.2809-19.2020
[52]   Valionyte E, Yang Y, Roberts S L, et al. Lowering mutant huntingtin levels and toxicity: autophagy-endolysosome pathways in Huntington’s disease. Journal of Molecular Biology, 2020,432(8):2673-2691.
doi: S0022-2836(19)30677-1 pmid: 31786267
[1] LI Xiao-jin,LI Yan-meng,LI Zhen-kun,XU An-jian,YANG Xiao-xi,HUANG Jian. The Mechanism of Copper Accumulation Induced Autophagy in Hepatocytes of ATP7B-deficient Mice Based on RNA-sequencing[J]. China Biotechnology, 2021, 41(9): 10-19.
[2] YANG Wan-bin,XU Yan,ZHUO Shi-xuan,WANG Xin-yi,LI Ya-jing,GUO Yi-fan,ZHANG Zheng-guang,GUO Yuan-yuan. Progress of Long Non-coding RNAs Related Epigenetic Modifications in Cancer[J]. China Biotechnology, 2021, 41(8): 59-66.
[3] LU Yu-xiang,LI Yuan,FANG Dan-dan,WANG Xue-bo,YANG Wan-peng,CHU Yuan-kui,YANG Hua. The Role and Expression Regulation of MiR-5047 in the Proliferation and Migration of Breast Cancer Cells[J]. China Biotechnology, 2021, 41(4): 9-17.
[4] CAI Run-ze,WANG Zheng-bo,CHEN Yong-chang. Research Progress of Mecp2 Affecting Metabolic Function in Rett Syndrome[J]. China Biotechnology, 2021, 41(2/3): 89-97.
[5] HAN Xue-yi,LI Yi-fan,LU Yue-da,XIONG Guo-liang,YU Chang-yuan. Preparation of Porphyrin Metal-organic Framework with Autophagy Inhibitory Effect and Its Photodynamic Cancer Treatment[J]. China Biotechnology, 2021, 41(11): 48-54.
[6] TANG De-ping,XING Meng-jie,SONG Wen-tao,YAO Hui-hui,MAO Ai-hong. Advance of microRNA Therapeutics in Cancer and Other Diseases[J]. China Biotechnology, 2021, 41(11): 64-73.
[7] ZENG Xiang-Yi,PAN Jie. Progress on Autophagy Regulation of Browning of White Adipose Cells[J]. China Biotechnology, 2020, 40(6): 63-73.
[8] TANG Min,WAN Qun,SUN Shi-lei,HU Jing,SUN Zi-jiu,FANG Yu-ting,ZHANG Yan. The Effects of Hsa-miR-5195-3p on the Proliferation, Migration and Invasion of Human Cervical Cancer SiHa Cells[J]. China Biotechnology, 2020, 40(4): 17-24.
[9] DAI Qi-nan,ZHANG Jing-hong. Advances in Molecular Mechanisms Related to Tumor Multi-drug Resistance, Autophagy, DNA Repair and Tumor Stem Cells[J]. China Biotechnology, 2020, 40(4): 69-77.
[10] CHEN Xue-yan,ZHANG Na,CHEN Juan,YANG Yan-hong,ZHANG Ju-feng. Effect of Hsa-miR-411-3P on Gastric Cancer Cells and Related Mechanisms[J]. China Biotechnology, 2020, 40(4): 1-9.
[11] HUANG Sheng, YAN Qi-tao, XIONG Shi-lin, PENG Yi-qi, ZHAO Rui. Construction of CHD5 Gene Overexpressing Lentiviral Vector Based on CRISPR/Cas9-SAM System and the Effect of CHD5 on Proliferation, Migration and Invasion in T24 Cells[J]. China Biotechnology, 2020, 40(3): 1-8.
[12] HU Li-jun,DUAN Liang,HUANG Yi-yun,LIN Lu,HUANG Mao,CHEN Lu,PENG Qi,HU Qin,ZHANG Yan,ZHOU Lan. S100A9 Is Involved in Fusobacterium nucleatum-Induced Proliferation and Migration of Colon Cancer HCT116 and SW480 Cells[J]. China Biotechnology, 2020, 40(1-2): 84-91.
[13] FENG Xue-jiao,HOU Hai-long,YU Qiong,WANG Jun-shu. Market Analysis and Countermeasures of Cervical Cancer Vaccine in China[J]. China Biotechnology, 2020, 40(11): 96-101.
[14] ZHU Yongzhao,TAO Jin,REN Meng-meng,XIONG Ran,HE Ya-qin,ZHOU Yu,LU Zhen-hui,DU Yong,YANG Zhi-hong. Autophagy Protects Against Apoptosis of Human Placental Mesenchymal Stem Cells of Fetal Origin Induced by Tumor Necrosis Fator-α[J]. China Biotechnology, 2019, 39(9): 62-67.
[15] TANG Xin,MAO Xin-fang,MA Bin-yun,GOU Ping. Antimicrobial Peptides: Current Status and Future Challenges[J]. China Biotechnology, 2019, 39(8): 86-94.