Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2017, Vol. 37 Issue (10): 72-80    DOI: 10.13523/j.cb.20171010
    
Establishment of Taqman Quantitative PCR System to Estimate Copy Numbers of Exogenous Transgene in Genome Edited Tomato
REN Shuang, ZHU Hong-liang
College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
Download: HTML   PDF(1278KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  Recently, CRISPR/Cas9 genome editing technology has been broadly utilized to crop breeding. Genome-edited but transgene-free plants can be segregated away from T0 transgenic plants by genetic separation, which will eliminate the risk of transgenic safety. Copy numbers of transgene which has been integrated into the transformed plant genome is a critical factor affecting the genetic separation of the offspring. Copy numbers are currently obtained by Southern blot analysis, but this method is complicated and requires relatively large amounts of plant materials. As to avoid these shortcomings, Real-time Fluorescent Quantitative Polymerase Chain Reaction provides a new solution. The endogenous ascorbate peroxidase (APX) is selected as reference gene. The exogenous hygromycin phosphortransferase (HPT) is selected as target gene. With the Taqman RT-PCR conditions, one copy was significantly estimated in the 12 genome edited tomatos of slyPDS (Phytoene desaturase). Initially, a sensitive and efficient detection system is developed for estimating copy number in genome edited tomato, which laid a foundation for the rapid and reliable screening of improved crops.

Key wordsReal-time Fluorescent Quantitative PCR      Taqman probe      CRISPR/Cas9      Copy number      Genome edited tomato     
Received: 13 April 2017      Published: 25 October 2017
ZTFLH:  Q786  
Cite this article:

REN Shuang, ZHU Hong-liang. Establishment of Taqman Quantitative PCR System to Estimate Copy Numbers of Exogenous Transgene in Genome Edited Tomato. China Biotechnology, 2017, 37(10): 72-80.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20171010     OR     https://manu60.magtech.com.cn/biotech/Y2017/V37/I10/72

[1]   周想春, 邢永忠. 基因组编辑技术在植物基因功能鉴定及作物育种中的应用. 遗传, 2016, 38(3):227-242. Zhou X C, Xing Y Z. The application of genome editing in identification of plant gene function and crop breeding. Hereditas, 2016, 38(3):227-242.
[2]   曾秀英, 侯学文. CRISPR/Cas9基因组编辑技术在植物基因功能研究及植物改良中的应用. 植物生理学报, 2015,51(9):1351-1358. Zeng X Y, Hou X W. Application of CRISPR/Cas9 genome editing technology in functional genomics and improvement of plants. Plant Physiology Journal, 2015,51(9):1351-1358.
[3]   魏鹏程, 杨剑波, 李浩, 等. 一种主要农作物非转基因的基因组定向分子改良方法和应用. 安徽, CN103555711A, 2014. A Method and Application of Genome-oriented Molecular Modification for Non-transgenic Genes in a Main Crop. Anhui, CN103555711A, 2014.
[4]   李敏, 汪洋, 张银萍, 等. TaqMan探针与SYBR Green实时定量PCR法检测转基因植物外源基因拷贝数的差异分析. 安徽农业大学学报, 2012, (4):568-570. LI M, Wang Y, Zhang Y P, et al. Variance analysis between TaqMan probe and SYBR Green real-time quantitative PCR for determining the copy number of transgene in transformed plants. Journal of Anhui Agricultural University, 2012, (4):568-570.
[5]   Stefano B, Patrizia B, Matteo C, et al. Inverse PCR and quantitative PCR as alternative methods to southern blotting analysis to assess transgene copy number and characterize the integration site in transgenic woody plants. Biochemical Genet, 2016, 54(3):1-15.
[6]   Xu X, Peng C, Wang X, et al. Comparison of droplet digital PCR with quantitative real-time PCR for determination of zygosity in transgenic maize. Transgenic Res, 2016, 25(6):855-864.
[7]   Schouten J P, Mcelgunn C J, Waaijer R, et al. Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Res, 2002, 30(12):e57.
[8]   Carter N P. Methods and strategies for analyzing copy number variation using DNA microarrays. Nat Genet, 2007, 39(7 suppl):S16-S21.
[9]   苏慧慧, 李涛, 谢雯琦, 等. 基于实时荧光定量PCR对转基因樱桃番茄外源基因拷贝数的检测. 分子植物育种, 2015, 13(2):345-354. Su H H, Li T, Xie W Q, et al. Detecting exogenous gene copy numbers of exogenous gene in transgenic tomato based on fluorescent quantitative real-time PCR. Molecular Plant Breeding, 2015, 13(2):345-354.
[10]   白国辉, 刘建国, 田源,等. 转基因番茄防龋疫苗中外源目的基因拷贝数的检测. 上海口腔医学, 2013, 22(6):613-617. Bai G H, Liu J G, Tian Y, et al. Detection of the exogenous gene copy number of the transgenic tomato anti-caries vaccine. Shanghai Journal of Stomatology, 2013, 22(6):613-617.
[11]   Yang L, Ding J, Zhang C, et al. Estimating the copy number of transgenes in transformed rice by real-time quantitative PCR. Plant Cell Rep, 2005, 23(10):759-763.
[12]   张贺, 李波, 周虚, 等. 实时荧光定量PCR技术研究进展及应用. 动物医学进展, 2006, 27(z1):5-12. Zhang H, Li B, Zhou X, et al. Technology of capillary electrophoresis and its application in analysis of veterinary drug residues. Progress in Veterinary Medicine, 2006, 27(z1):5-12.
[13]   王爱民. 实时荧光定量PCR(TaqMan)法测定外源基因的拷贝数. 广西植物, 2009, 29(3):408-412. Wang A M. Estimating copy number of transgenic gene by real-time fluorescent quantitative PCR(TaqMan). Guihaia, 2009, 29(3):408-412.
[14]   裘劼人, 许颖, 喻富根. 利用SYBR Green实时定量PCR法检测转基因植物外源基因的拷贝数. 安徽农业科学, 2011, 39(21):12655-12657. Qiu J R, Xu Y, Yu F G. Estimating the copy number of transgenes in transformed Arabidopsis by SYBR green real-time quantitative PCR. Journal of Anhui Agricultural Sciences, 2011, 39(21):12655-12657.
[15]   朱建楚, 胡银岗, 奚亚军, 等. 实时荧光定量PCR技术在检测外源基因拷贝数中的应用. 西北农业学报, 2005, 14(6):78-82. Zhu J C, Hu Y G, Xi Y J, et al. The Application of quantitative real-time fluorescent PCR techniques in detecting the copy number of transgenic gene.Acta Agriculturae Boreali-occidentalis Sinica, 2005, 14(6):78-82.
[16]   Klein D. Quantification using real-time PCR technology:applications and limitations. Trends Mol Med, 2002, 8(6):257-260.
[17]   梁彦君. 转基因番茄外源基因检测方法研究. 杭州:浙江理工大学, 生命科学学院, 2013. Liang Y J. Research on the detection methods of exogenous genes in transgenic tomato. Hangzhou:Zhejiang Sci-Tech University, College of Life Sciences, 2013.
[18]   赵焕英, 包金风. 实时荧光定量PCR技术的原理及其应用研究进展. 中国组织化学与细胞化学杂志, 2007, 16(4):492-497. Zhao H Y, Bao J F. Research on the principle and application of Real-time Fluorescence Quantitative Polymerase Chain Reaction. Chinese Journal of Histochemistry and Cytochemistry, 2007, 16(4):492-497.
[19]   钟江华, 张光萍, 柳小英. 实时荧光定量PCR技术的研究进展与应用. 氨基酸和生物资源, 2011, 33(2):68-72. Zhong J H, Zhang G P, Liu X Y. Development of Real-Time Fluorescent Quantitative PCR and its application. Amino Acids & Biotic Resources, 2011, 33(2):68-72.
[20]   洪云, 李津, 汪和睦, 等. 实时荧光定量PCR技术进展. 国外流行病学传染病学杂志, 2006, 33(3):161-163. Hong Y, Li J, Wang H M, et al. Progress in real-time quantitative PCR technique. International Journal of Epidemiology and Infectious Disease, 2006, 33(3):161-163.
[21]   廉红霞, 高腾云, 傅彤, 等. 实时荧光定量PCR定量方法研究进展. 江西农业学报, 2010, 22(10):132-136. Lian H X, Gao T Y, Fu T, et al.Research advance in method of Real-time Fluorescent Quantitative Polymerase Chain Reaction. Acta Agriculturae Jiangxi, 2010, 22(10):132-136.
[22]   陈旭, 齐凤坤, 康立功, 等. 实时荧光定量PCR技术研究进展及其应用. 东北农业大学学报, 2010, 41(8):148-155. Chen X, Qi F K, Kang L G, et al. Advance and application of real-time fluorescent quantitative PCR. Journal of Northeast Agricultural University, 2010, 41(8):148-155.
[23]   李淑洁, 张正英. REAL-TIME PCR方法测定转基因小麦中外源基因拷贝数. 中国生物工程杂志, 2010, 30(3):90-94. Li S J, Zhang Z Y. Using Real-time PCR to determine transgene copy number in wheat. China Biotechnology, 2010, 30(3):90-94.
[24]   冀志庚, 高学军, 敖金霞, 等. SYBR Green实时定量PCR检测转基因大豆中外源基因拷贝数. 东北农业大学学报, 2011, 42(10):11-15. Ji Z G, Gao X J, Ao J X, et al. Establishment of SYBR Green-base quantitative real-time PCR assay for determining transgene copy number in transgenic soybean. Journal of Northeast Agricultural University, 2011, 42(10):11-15.
[25]   韩强, 刘瑞芳, 陆玲鸿, 等. 实时荧光PCR检测转基因大豆外源基因的拷贝数. 核农学报, 2016, 30(4):646-653. Han Q, Liu R F, Lu L H, et al. Detection of transgene copy number in transgenic soybean by Real-time Fluorescence Quantitative PCR. Journal of Nuclear Agricultural Sciences, 2016, 30(4):646-653.
[26]   Qiu Y W, Gao X J, Qi B R, et al. Establishment of TaqMan Real-time Quantitative PCR Assay for foreign gene copy numbers in transgenic soybean. Journal of Northeast Agricultural University(English Edition), 2012, 19(4):48-52.
[27]   Yi C X, Hong Y. Estimating the copy number of transgenes in transformed cotton by real-time quantitative PCR. Methods in Molecular Biology, 2013, 958(10-11):109-130.
[28]   Mason G, Provero P, Vaira A M, et al. Estimating the number of integrations in transformed plants by quantitative real-time PCR. BMC Biotechnol, 2002, 2(1):20.
[29]   Ma X L, Zhang Q Y, Zhu Q L, et al. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol Plant, 2015, 8(8):1274-1284.
[30]   Song P, Cai C, Skokut M, et al. Quantitative real-tmie PCR as a screening tool for estimating transgene copy number in WHISKERSTM-derived transgenic maize. Plant Cell Reports, 2002, 20(10):948-954.
[31]   文莉. 利用实时定量PCR技术检测柑橘外源基因的拷贝数. 武汉:华中农业大学, 园艺林学学院, 2011. Wen L. Estimating transgene copy number in citrus by Real-Time Quantitative PCR. Wuhan:Huazhong Agricultural University, College of Horticulture & Forestry Sciences, 2011.
[1] WU Xiu-zhi,WANG Hong-jie,ZU Yao. Functional Study of hoxa1a Regulating Craniofacial Bone Development in Zebrafish[J]. China Biotechnology, 2021, 41(9): 20-26.
[2] BI Bo,ZHANG Yu,ZHAO Hui. Application of Yeast Hybrid System in Study of Off-target Rate of CRISPR/Cas9 Gene Editing System[J]. China Biotechnology, 2021, 41(6): 27-37.
[3] WANG Yan-mei,KOU Hang,MA Mei,SHEN Yu-yu,ZHAO Bao-ding,LU Fu-ping,LI Ming. CRISPR/Cas9-mediated Inactivation of the Pectinase Gene in Aspergillus niger and Evaluation of the Mutant Strain[J]. China Biotechnology, 2021, 41(5): 35-44.
[4] GUO Yang,CHEN Yan-juan,LIU Yi-chen,WANG Hai-jie,WANG Cheng-ji,WANG Jue,WAN Ying-han,ZHOU Yu,XI Jun,SHEN Ru-ling. Pd-1 Gene Knockout Mouse Model Construction and Preliminary Phenotype Verification[J]. China Biotechnology, 2021, 41(10): 1-11.
[5] GUO Yang,WAN Ying-han,WANG Jue,GONG Hui,ZHOU Yu,CI Lei,WAN Zhi-peng,SUN Rui-lin,FEI Jian,SHEN Ru-ling. Toll-like Receptor 4 (TLR4) Gene Knockout Mouse Model Construction and Preliminary Phenotypic Analysis[J]. China Biotechnology, 2020, 40(6): 1-9.
[6] HUANG Sheng, YAN Qi-tao, XIONG Shi-lin, PENG Yi-qi, ZHAO Rui. Construction of CHD5 Gene Overexpressing Lentiviral Vector Based on CRISPR/Cas9-SAM System and the Effect of CHD5 on Proliferation, Migration and Invasion in T24 Cells[J]. China Biotechnology, 2020, 40(3): 1-8.
[7] WANG Wei-dong,DU Jia-ru,ZHANG Yun-shang,FAN Jian-ming. The Application of CRISPR/Cas9 in the Treatment of Human Virus Infection-Related Diseases[J]. China Biotechnology, 2020, 40(12): 18-24.
[8] LEI Hai-ying,ZHAO Qing-song,BAI Feng-lin,SONG Hui-fang,WANG Zhi-jun. Identification of Developing-related Gene ZmCen Using CRISPR/Cas9 in Maize[J]. China Biotechnology, 2020, 40(12): 49-57.
[9] WANG Yue,MU Yan-shuang,LIU Zhong-hua. Progress of CRISPR/Cas Base Editing System[J]. China Biotechnology, 2020, 40(12): 58-66.
[10] LIU Li-yan,LIU Qi-qi,ZHANG Ying,WANG Sheng-qi. The Study of a Novel Nucleic Acid Detection Technology by Double-stranded Probe Real-time PCR[J]. China Biotechnology, 2020, 40(11): 28-34.
[11] WANG Zhi-min,BI Mei-yu,HE Jia-fu,Ren Bing-xu,LIU Dong-jun. Development of CRISPR/Cas9 System and Its Application in Animal Gene Editing[J]. China Biotechnology, 2020, 40(10): 43-50.
[12] Lu JIAN,Ying-hui HUANG,Tian-ya LIANG,Li-min WANG,Hong-tao MA,Ting ZHANG,Dan-yang LI,Ming-lian WANG. Generation of JAK2 Gene Knockout K562 Cell Line by CRISPR/Cas9 System[J]. China Biotechnology, 2019, 39(7): 39-47.
[13] Song-tao ZHOU,Yun CHEN,Xiao-hai GONG,Jian JIN,Hua-zhong LI. Using CRISPR/Cas9 Technology to Construct Human Serum Albumin CHO Stable Expression Cell Line[J]. China Biotechnology, 2019, 39(4): 52-59.
[14] WAN Ying-han,CI Lei,WANG Jue,GONG Hui,LI Jun,DONG Ru,SUN Rui-lin,FEI Jian,SHEN Ru-ling. Construction and Preliminary Phenotypic Verification of PD-L1 Knockout Mice[J]. China Biotechnology, 2019, 39(12): 42-49.
[15] Sai-bao LIU,Ya-fang LI,Hui WANG,Wei WANG,Duo-liang RAN,Hong-yan CHEN,Qing-wen MENG. Construction of Influenza Virus High-producing Cell Line MDCK-Tpl2 -/- with CRISPR / Cas9[J]. China Biotechnology, 2019, 39(1): 46-54.