Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2019, Vol. 39 Issue (1): 46-54    DOI: 10.13523/j.cb.20190106
    
Construction of Influenza Virus High-producing Cell Line MDCK-Tpl2 -/- with CRISPR / Cas9
Sai-bao LIU1,2,Ya-fang LI1,2,Hui WANG1,2,Wei WANG2,Duo-liang RAN1,**(),Hong-yan CHEN2,**(),Qing-wen MENG2,**()
1 College of Veterinary Medicine,Xinjiang Agricultural University, Urumqi 830000,China
2 State Key Laboratory of Veterinary Biotechnology,Heilongjiang Provincial Key Laboratory of Laboratory Animals and Comparative Medicine,Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences,Harbin 150069, China
Download: HTML   PDF(1913KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Tpl2 is the key regulator of the regulation of I (IFNα/β) and II (IFNγ) IFN, which is essential for the effective immune response during virus infection. In order to establish a new MDCK cell line supporting the efficient reproduction of influenza virus, CRISPR/Cas9 gene editing technology was used to construct Tpl2 knockout MDCK cells, and its cell growth curve was drawn. Tests for characteristics, extraneous agents, endogenous agents and tumorigenicity are performed on cells according to Chinese Pharmacopeia Book III. Influenza virus was inoculated into cells (MOI=0.1), the hemagglutination titers of the cell culture supernatants at 12h, 24h, 48h, 72h, and the TCID50 titer at 72h were determined. The target genome sequencing results shows that a MDCK cell (MDCK-Tpl2 -/-) knocked out of Tpl2 stably is obtained;The Tpl2 knock out cell line is similar to wild type cells in growth characteristics, and the test of epithelial cell morphology, intracellular bacteria, fungi, mycoplasma, virus and tumorigenicity are negative. After inoculating virus for 12h, 24h, 48h, and 72h, the hemagglutination titer of MDCK-Tpl2 -/- cell culture supernatant increased by 1.78-2.5 times. At 72h after virus inoculation, the TCID50 titer of the MDCK-Tpl2 -/- cell culture supernatant virus increased 2.8 times.The results showed that Tpl2-deficient MDCK cell line could increase the production of influenza virus and lay a foundation for improving vaccine quality.



Key wordsTpl2      CRISPR/Cas9      MDCK-Tpl2 -/- cell line      Cell quality control      Avian influenza virus     
Received: 28 March 2018      Published: 28 February 2019
ZTFLH:  Q78  
Corresponding Authors: Duo-liang RAN,Hong-yan CHEN,Qing-wen MENG     E-mail: xjrdl7@163.com;chenhongyan@caas.cn;mqw@hvri.ac.cn
Cite this article:

Sai-bao LIU,Ya-fang LI,Hui WANG,Wei WANG,Duo-liang RAN,Hong-yan CHEN,Qing-wen MENG. Construction of Influenza Virus High-producing Cell Line MDCK-Tpl2 -/- with CRISPR / Cas9. China Biotechnology, 2019, 39(1): 46-54.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20190106     OR     https://manu60.magtech.com.cn/biotech/Y2019/V39/I1/46

sgRNA Oligonucleotide sequence
Tpl2-sgRNA1 F:5'-CCGGGATCGGTCAGATACGGAACCG-3'
R:5'-AAACCGGTTCCGTATCTGACCGATC-3'
Tpl2-sgRNA2 F:5'-CCGGGTCCGATGTAATAGACATTA-3'
R:5'-AAACTAATGTCTATTACATCGGAC-3'
Table 1 The oligo sequences of Tpl2-sgRNA
Primer Primer sequence Product(bp)
p-Tpl2-sgRNA1 F:5'-AGAGGTGCCTTGGTTGTC-3' 113
R:5'-ATTCCTGTGGTCGGTGTC-3'
P-Tpl2-sgRNA2 F:5'-GAGTACATGAGCACTGGAAGT-3' 188
R:5'-AGCAGAGATTCTGAATGCTCC-3'
Table 2 The primer to identify target site
Fig.1 Design strategy of sgRNA plasmid for Tpl2 knockout
Fig. 2 Tpl2 sgRNA sequencing (a)Tpl2-sgRNA1 sequencing (b)Tpl2-sgRNA2 sequencing
Fig.3 Plasmid transfected MDCK cells (a)Microscopy under fluorescent field of the control group(10×) (b)Microscopy under fluorescent field of the experimental group(10×) (c)The control flow analysis results (d)The experimental group flow analysis results
Fig.4 The targeted knockout effect of Tpl2-sgRNA1 measured by Polyacrylamide gel electrophoresis M:DL 500 ;1-15:Sample to be tested; WT:Untransfected cells; Water: Negative control
Fig.5 Tpl2-sgRNA1-6# sequencing results
Fig.6 Tpl2-sgRNA1-6# F10 sequencing results
Fig.7 WT MDCK and Tpl2 knockout MDCK cell growth curve
Fig.8 Observation of cell morphology (a)Observation of MDCK morphology(10×) (b)Observation of MDCK-Tpl2-/- morphology(10×)
Fig.9 The cell DNA stained by Hochest
Fig.10 Check the tumorigenicity of MDCK-Tpl2-/- cells (a)Negative control(MDCK cell group) (b)MDCK-Tpl2-/- cell group (c)Positive control(HeLa cell group)
Fig.11 Comparison of HA titers after infected with AIV
[1]   吴雪伶, 冯建平, 樊金萍 , 等. 流感疫苗生产用新型细胞基质 MDCK细胞的质量控制研究. 中华微生物学和免疫学杂志, 2013,35(12):943-949.
doi: 10.3760/cma.j.issn.0254-5101.2013.12.011
[1]   Wu X L, Feng J P, Fan J P , et al. Study on quality control of MDCK cells used for the production of influenza vaccine. Chinese Journal of Microbiology and Immunology, 2013,35(12):943-949.
doi: 10.3760/cma.j.issn.0254-5101.2013.12.011
[2]   Nerome K, Ishida M . The multiplication of an influenza C virus in an established line of canine kidney (MDCK) cells. Journal of General Virology, 1978,39(1):179-181.
doi: 10.1099/0022-1317-39-1-179 pmid: 641530
[3]   Barrett P N, Mundt W, Kistner O , et al. Vero cell platform in vaccine production: moving towards cell culture-based viral vaccines. Expert Review of Vaccines, 2009,8(5):607-618.
doi: 10.1586/erv.09.19 pmid: 19397417
[4]   Bonjardim C, Ferreira P E . Interferons: signaling, antiviral and viral evasion. Immunology Letters, 2009,122(1):1-11.
doi: 10.1016/j.imlet.2008.11.002 pmid: 19059436
[5]   Hamamoto I, Takaku H, Tashiro M , et al. High yield production of influenza virus in Madin Darby canine kidney (MDCK) cells with stable knockdown of IRF7. PLoS One, 2013,8(3):e59892.
doi: 10.1371/journal.pone.0059892 pmid: 23555825
[6]   Liu A L, Li Y F, Qi W , et al. Comparative analysis of selected innate immune-related genes following infection of immortal DF-1 cells with highly pathogenic (H5N1) and low pathogenic (H9N2) avian influenza viruses. Virus Genes, 2015,50(2):189-199.
doi: 10.1007/s11262-014-1151-z pmid: 25557928
[7]   Yi E, Oh J, Giao N Q , et al. Enhanced production of enveloped viruses in BST-2-deficient cell lines. Biotechnology & Bioengineering, 2017,114(10):2289-2297.
doi: 10.1002/bit.26338 pmid: 28498621
[8]   Luo W, Zhang J, Liang L , et al. Phospholipid scramblase 1 interacts with influenza A virus NP, impairing its nuclear import and thereby suppressing virus replication. PLoS Pathogens, 2018,14(1):e1006851.
doi: 10.1371/journal.ppat.1006851 pmid: 5792031
[9]   Makris A, Patriotis C, Bear S E , et al. Genomic organization and expression of Tpl-2 in normal cells and moloney murine leukemia virus-induced rat T-cell lymphomas: activation by provirus insertion. Journal of Virology, 1993,67(7):4283-4289.
doi: 10.1016/0166-0934(93)90081-2 pmid: 237798
[10]   Kuriakose T, Tripp R A, Watford W T . Tumor progression locus 2 promotes induction of IFNλ, interferon stimulated genes and antigen-specific CD8 + T cell responses and protects against influenza virus . PLoS Pathogens, 2015,11(8):e1005038.
doi: 10.1371/journal.ppat.1005038
[11]   国家药典委员会. 中华人民共和国药典2010版.北京: 中国医药科技出版社, 2010.
[11]   Chinese Pharmacopoeia Commission. Pharmacopoeia of People’ s Republic of China: 2010 Edition. Beijing:China Medical Science Press, 2010.
[12]   Mussolino C, Cathomen T . RNA guides genome engineering. Nature Biotechnology, 2013,31(3):208-209.
doi: 10.1038/nbt.2527
[13]   Onions D, Egan W, Jarrett R , et al. Validation of the safety of MDCK cells as a substrate for the production of a cell-derived influenza vaccine. Biologicals, 2010,38(5):544-551.
doi: 10.1016/j.biologicals.2010.04.003 pmid: 20537553
[14]   Medema J K, Meijer J, Kersten A J , et al. Safety assessment of Madin Darby canine kidney cells as vaccine substrate. Developmental Biology, 2006,123:243-250.
pmid: 16566450
[15]   Gregersen J P, Schmitt H J, Trusheim H , et al. Safety of MDCK cell culture-based influenza vaccines. Future Microbiology, 2011,6(2):143-152.
doi: 10.2217/fmb.10.161 pmid: 21366415
[16]   陈超, 池晓娟, 白庆玲 , 等. 甲型流感病毒感染过程中干扰素介导的天然免疫应答机制. 生物工程学报, 2015,31(12):1671-1681.
doi: 10.13345/j.cjb.150296
[16]   Chen C, Chi X J, Bai Q L , et al. Mechanisms underlying interferon-mediated host innate immunity during influenza A virus infection. Chin J Biotech, 2015,31(12):1671-1681.
doi: 10.13345/j.cjb.150296
[1] WU Xiu-zhi,WANG Hong-jie,ZU Yao. Functional Study of hoxa1a Regulating Craniofacial Bone Development in Zebrafish[J]. China Biotechnology, 2021, 41(9): 20-26.
[2] BI Bo,ZHANG Yu,ZHAO Hui. Application of Yeast Hybrid System in Study of Off-target Rate of CRISPR/Cas9 Gene Editing System[J]. China Biotechnology, 2021, 41(6): 27-37.
[3] WANG Yan-mei,KOU Hang,MA Mei,SHEN Yu-yu,ZHAO Bao-ding,LU Fu-ping,LI Ming. CRISPR/Cas9-mediated Inactivation of the Pectinase Gene in Aspergillus niger and Evaluation of the Mutant Strain[J]. China Biotechnology, 2021, 41(5): 35-44.
[4] GUO Yang,CHEN Yan-juan,LIU Yi-chen,WANG Hai-jie,WANG Cheng-ji,WANG Jue,WAN Ying-han,ZHOU Yu,XI Jun,SHEN Ru-ling. Pd-1 Gene Knockout Mouse Model Construction and Preliminary Phenotype Verification[J]. China Biotechnology, 2021, 41(10): 1-11.
[5] GUO Yang,WAN Ying-han,WANG Jue,GONG Hui,ZHOU Yu,CI Lei,WAN Zhi-peng,SUN Rui-lin,FEI Jian,SHEN Ru-ling. Toll-like Receptor 4 (TLR4) Gene Knockout Mouse Model Construction and Preliminary Phenotypic Analysis[J]. China Biotechnology, 2020, 40(6): 1-9.
[6] HUANG Sheng, YAN Qi-tao, XIONG Shi-lin, PENG Yi-qi, ZHAO Rui. Construction of CHD5 Gene Overexpressing Lentiviral Vector Based on CRISPR/Cas9-SAM System and the Effect of CHD5 on Proliferation, Migration and Invasion in T24 Cells[J]. China Biotechnology, 2020, 40(3): 1-8.
[7] WANG Wei-dong,DU Jia-ru,ZHANG Yun-shang,FAN Jian-ming. The Application of CRISPR/Cas9 in the Treatment of Human Virus Infection-Related Diseases[J]. China Biotechnology, 2020, 40(12): 18-24.
[8] LEI Hai-ying,ZHAO Qing-song,BAI Feng-lin,SONG Hui-fang,WANG Zhi-jun. Identification of Developing-related Gene ZmCen Using CRISPR/Cas9 in Maize[J]. China Biotechnology, 2020, 40(12): 49-57.
[9] WANG Yue,MU Yan-shuang,LIU Zhong-hua. Progress of CRISPR/Cas Base Editing System[J]. China Biotechnology, 2020, 40(12): 58-66.
[10] WANG Zhi-min,BI Mei-yu,HE Jia-fu,Ren Bing-xu,LIU Dong-jun. Development of CRISPR/Cas9 System and Its Application in Animal Gene Editing[J]. China Biotechnology, 2020, 40(10): 43-50.
[11] Lu JIAN,Ying-hui HUANG,Tian-ya LIANG,Li-min WANG,Hong-tao MA,Ting ZHANG,Dan-yang LI,Ming-lian WANG. Generation of JAK2 Gene Knockout K562 Cell Line by CRISPR/Cas9 System[J]. China Biotechnology, 2019, 39(7): 39-47.
[12] Song-tao ZHOU,Yun CHEN,Xiao-hai GONG,Jian JIN,Hua-zhong LI. Using CRISPR/Cas9 Technology to Construct Human Serum Albumin CHO Stable Expression Cell Line[J]. China Biotechnology, 2019, 39(4): 52-59.
[13] WAN Ying-han,CI Lei,WANG Jue,GONG Hui,LI Jun,DONG Ru,SUN Rui-lin,FEI Jian,SHEN Ru-ling. Construction and Preliminary Phenotypic Verification of PD-L1 Knockout Mice[J]. China Biotechnology, 2019, 39(12): 42-49.
[14] Hai-feng PAN,Han YANG,Si-yuan YU,Ting-dong LI,Sheng-xiang GE. Progress in Gene Editing Methods of CRISPR/Cas9 Based on in Vitro Assembly of Ribonucleoprotein[J]. China Biotechnology, 2019, 39(1): 71-76.
[15] Ya-fang LI,Ying-hui ZHAO,Sai-bao LIU,Wei WANG,Wei-jun ZENG,Jin-quan WANG,Hong-yan CHEN,Qing-wen MENG. Chicken OV Promoter Expressed HA to Protect Chickens from Lethal Challenge of AIV[J]. China Biotechnology, 2018, 38(7): 67-74.