Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2020, Vol. 40 Issue (11): 28-34    DOI: 10.13523/j.cb.2008124
    
The Study of a Novel Nucleic Acid Detection Technology by Double-stranded Probe Real-time PCR
LIU Li-yan1**,LIU Qi-qi1**,ZHANG Ying2,WANG Sheng-qi1***()
1 Institute of Radiation Medicine, Academy of Military Medical Science, Beijing 100850, China
2 Zhengzhou Maylink Biotechnology Co. Ltd, Zhengzhou 450000, China
Download: HTML   PDF(10152KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: Using a “double-stranded probe” real-time fluorescent PCR technology to improve the sensitivity of HBV nucleic acid detection, complete the genotype detection of metabolic enzyme CYP2C19 *2 in a tube. Methods: The double-stranded probe and the TaqMan probe was used to simultaneously detect different concentrations of HBV in serum samples by Shanghai Hongshi SLAN 96 real-time fluorescent PCR instrument. Then, according to the Ct value of nucleic acid detection by instrument to statistical analysis of results; the double-stranded probe was used to detect samples of different genotypes of metabolic enzyme CYP2C19*2 in a tube, and the detection of nucleic acid Ct value and genotype analysis were performed by Shanghai Hongshi SLAN 96 real-time fluorescent PCR instrument. Results: In the detection of HBV serum samples at different concentrations, the fluorescence background of the double-stranded probe was low and the detection sensitivity was higher than the TaqMan probe. And significant differences were noted between the two probes (P<0.05);The metabolic enzyme CYP2C19*2 genotypes of 36 samples were detected using the double-stranded probe, the results were consistent with those of Sanger sequencing. Conclusion: The double-stranded probe real-time fluorescent PCR detection technology can complete the highly sensitive nucleic acid detection of the target gene and also the genotype analysis.



Key wordsDouble-stranded probe      TaqMan probe      Real-time PCR      HBV      CYP2C19*2     
Received: 15 August 2020      Published: 11 December 2020
ZTFLH:  Q819  
Corresponding Authors: Sheng-qi WANG     E-mail: sqwang@bmi.ac.cn
Cite this article:

LIU Li-yan,LIU Qi-qi,ZHANG Ying,WANG Sheng-qi. The Study of a Novel Nucleic Acid Detection Technology by Double-stranded Probe Real-time PCR. China Biotechnology, 2020, 40(11): 28-34.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2008124     OR     https://manu60.magtech.com.cn/biotech/Y2020/V40/I11/28

Fig.1 Structure of double-stranded probe
Fig.2 Detection values of the fluorescent background using double-stranded probe and TaqMan probe The “1” group straight line shows the detection value of the fluorescent background signal of the TaqMan probe. The “2” group straight line shows the detection value of the fluorescent background signal of the double-stranded probe
名称 序列(5'-3') 5' 荧光标记 3'荧光标记
HBV-F GYTATCGCTGGATGTGTCTGC
HBV-R GACAAACGGGCAACATACCTT
HBV-P CCTCTKCATCCTGCTGCTATGCCTCAT FAM BHQ1
GCATAGCAGCAGGATGM FAM BHQ1
CYP2C19*2-F ATTATTGTTTTCTCTTAGATAT
CYP2C19*2-R AAGTCCCGAGGGTTGTTGAT
CYP2C19*2-P TATTTCCCAGGAACCCA FAM BHQ1
TATGGGTTCCCGGGAAATAAT HEX BHQ1
Table 1 Primer and probe sequences of HBV, and CYP2C19*2
样本浓度(IU/ml) Ct值
双链探针 TaqMan探针
2.66×108 13.39 16.60
2.45×108 13.52 16.62
1.93×108 13.90 16.55
1.33×107 18.08 21.92
1.08×107 18.34 22.10
1.03×107 18.55 22.29
1.49×106 22.00 25.74
1.45×106 22.20 26.19
1.04×106 21.57 25.36
2.10×105 24.58 28.28
1.97×105 24.68 28.33
1.35×105 25.27 29.13
1.13×104 29.16 32.96
1.02×104 29.32 32.72
1.01×104 29.35 32.88
1.12×103 32.88 36.54
1.09×103 33.71 37.07
1.05×103 34.05 37.84
9.81×101 36.71 No Ct
8.58×101 37.00 No Ct
7.10×101 38.03 No Ct
1.81×101 38.89 No Ct
1.12×101 39.32 No Ct
1.17×101 39.37 No Ct
Table 2 The Ct values of 24 quantitative HBV samples by double-stranded probe and TaqMan probes detection
编号 Ct值
野生链 突变链
G/A G/G A/A G/A G/G A/A
1 32.44 31.90 No Ct 30.66 No Ct 29.49
2 34.31 32.45 No Ct 32.59 No Ct 32.53
3 32.66 36.97 No Ct 30.65 No Ct 36.32
4 37.66 30.77 No Ct 36.08 No Ct 31.11
5 34.07 32.10 No Ct 32.94 No Ct 24.50
6 29.14 36.04 No Ct 28.45 No Ct 32.80
7 29.09 35.12 No Ct 27.61 No Ct 28.68
8 31.78 37.14 No Ct 30.29 No Ct 28.83
9 28.48 28.64 No Ct 26.95 No Ct 29.97
10 31.46 32.21 No Ct 29.74 No Ct 30.01
11 36.60 32.33 No Ct 34.92 No Ct 31.19
12 32.27 33.63 No Ct 31.50 No Ct 31.23
Table 3 Detection results of three kinds of CYP2C19*2 genotypes by double-stranded probe
Fig.3 The detection of 36 samples of different CYP2C19* 2 genotypes by double-stranded probe (a) 12 samples of mutation genotype (A/A) by double-stranded probe detection (b) 12 samples of wild genotype (G/G) by double-stranded probe detection (c) 12 samples of heterozygous genotype(G/A) by double-stranded probe detection
[1]   Heid C A, Stevens J, Livak K J, et al. Real time quantitative PCR. Genome Research, 1996,6(10):986-994.
[2]   Shi S R, Ni B, Guo Y, et al. Detection of 2019 novel coronavirus in various biological specimens of novel coronavirus pneumonia. West China Medical Journal, 2020,35(2):132-136.
[3]   Liu R, Han H, Liu F, et al. Positive rate of RT-PCR detection of SARS-CoV-2 infection in 4880 cases from one hospital in Wuhan, China, from Jan to Feb 2020. Clinica Chimica Acta, 2020,505:172-175.
[4]   Henritzi D, Hoffmann B, Wacheck S, et al. A newly developed tetraplex real time RT-PCR for simultaneous screening of influenza virus types A, B, C and D. Influenza and Other Respiratory Viruses, 2019; 13(1):71-82.
doi: 10.1111/irv.12613 pmid: 30264926
[5]   Feng W N, Gu W Q, Zhao N, et al. Comparison of the superARMS and droplet digital PCR for detecting EGFR mutation in ctDNA from NSCLC patients. Translational Oncology, 2018,11(2):542-545.
[6]   Wilson H L, Tran T, Druce J, et al. Neutralization assay for zika and dengue viruses by use of real-time-PCR-based endpoint assessment. Journal of Clinical Microbiology, 2017,55(10):3104-3112.
[7]   Li-Wan-Po A, Girard T, Farndon P, et al. Pharmacogenetics of CYP2C19: functional and clinical implications of a new variant CYP2C19*17. British Journal of Clinical Pharmacology, 2010,69(3):222-230.
pmid: 20233192
[8]   Günther S, Asper M, R?ser C, et al. Application of real-time PCR for testing antiviral compounds against Lassa virus, SARS coronavirus and Ebola virus in vitro. Antiviral Research, 2004,63(3):209-215.
[9]   Zhang M, Gong Y, Osiowy C, et al. Rapid detection of hepatitis B virus mutations using real-time PCR and melting curve analysis. Hepatology, 2002,36(3):723-728.
pmid: 12198666
[10]   Sz?llosi J, Damjanovich S, Mátyus L. Application of fluorescence resonance energy transfer in the clinical laboratory: routine and research. Cytometry, 1998,34(4):159-179.
pmid: 9725457
[11]   Ozaki H, McLaughlin L W. The estimation of distances between specific backbone-labeled sites in DNA using fluorescence resonance energy transfer. Nucleic Acids Research, 1992,20(19):5205-5214.
pmid: 1408835
[12]   Arya M, Shergill I S, Williamson M, et al. Basic principles of real-time quantitative PCR. Expert Review of Molecular Diagnostics, 2005,5(2):209-219.
[13]   Wang S Q, Wang X H, Chen S H, et al. A new fluorescent quantitative polymerase chain reaction technique. Analytical Biochemistry, 2002,309(2):206-211.
[14]   Tyagi S, Kramer F R. Molecular beacons: probes that fluoresce upon hybridization. Nature Biotechnology, 1996,14(3):303-308.
[15]   Livak K J, Flood S J, Marmaro J, et al. Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization. PCR Methods and Applications, 1995,4(6):357-362.
[16]   Murray J L, Hu P, Shafer D A. Seven novel probe systems for real-time PCR provide absolute single-base discrimination, higher signaling, and generic components. Journal of Molecular Diagnostics, 2014,16(6):627-638.
[17]   Li Q, Luan G, Guo Q, et al. A new class of homogeneous nucleic acid probes based on specific displacement hybridization. Nucleic Acids Research, 2002,30(2):E5.
[18]   Song Y, Dou F, Zhou Z, et al. Microarray-based detection and clinical evaluation for helicobacter pylori resistance to clarithromycin or levofloxacin and the genotype of CYP2C19 in 1083 patients. Biomed Research International, 2018,2018:2684836.
[19]   Do H, Krypuy M, Mitchell P L, et al. High resolution melting analysis for rapid and sensitive EGFR and KRAS mutation detection in formalin fixed paraffin embedded biopsies. BMC Cancer, 2008,8:142.
pmid: 18495026
[20]   Chen A, Kao Y F, Brown C M. Translation of the first upstream ORF in the hepatitis B virus pregenomic RNA modulates translation at the core and polymerase initiation codons. Nucleic Acids Research, 2005,33(4):1169-1181.
[21]   Wang S Q, Liu Q Q, Zhang Y, et al. The structure and application of a double-stranded oligonucleotide nucleic acid probe: China, ZL201811643407.0. 2019-04-19[2020-08-08]. http://pss-system.cnipa.gov.cn/sipopublicsearch/patentsearch/showViewList-jumpToView.shtml.
[22]   刘颖梅. 甲型H1N1流感的病原学诊断//中国药理学会, 第十届全国化疗药理暨抗感染药理高峰论坛资料汇编. 北京:中国药理学会, 2010.
[22]   Liu Y M. The etiological diagnosis of influenza A H1N1//Chinese Pharmacological Society,Data Collection of The 10th National Chemotherapy Pharmacology and Anti-infective Pharmacology Summit Forum. Beijing: Chinese Pharmacological Society, 2010.
[23]   McAnulty J M. Emerging infectious diseases. Public Health Research & Practice, 2016,26(5):2651653.
[24]   Morens D M, Folkers G K, Fauci A S. The challenge of emerging and re-emerging infectious diseases. Nature, 2004,430(6996):242-249.
pmid: 15241422
[25]   Zhang W J, Liao P. Analysis of the causes of similarities and differences in multiple nucleic acid tests for a case of Corona Virus Disease 2019. Chongqing Medicine:1-5.[2020-08-08]. http://kns.cnki.net/kcms/detail/50.1097.R.20200316.0821.002.html.
[26]   Phan T. Novel coronavirus: From discovery to clinical diagnostics. Infection Genetics and Evolution, 2020,79:104211.
[27]   Zhang J, Zhong J, Ding J, et al. Simultaneous detection of human CYP2C19 polymorphisms and antibiotic resistance of Helicobacter pylori using a personalised diagnosis kit. Journal of Global Antimicrobial Resistance, 2018,13:174-179.
[1] XU Yan,LIU Zheng-yun,ZHANG Wan-ling,WANG Sheng-yu,WANG Huan. Effect of Targeted Interference with TAGLN Expression on Biological Behavior of HBV-Positive Hepatocellular Carcinoma Cells and Its Mechanisms[J]. China Biotechnology, 2019, 39(11): 13-21.
[2] Li-li YU,Bo HU,Xue LI,Nai-shuo ZHU. Identification of Protein-protein Interaction of Hepatitis B Virus X Protein and Tab1 in Vivo and in Vitro[J]. China Biotechnology, 2018, 38(7): 1-6.
[3] REN Shuang, ZHU Hong-liang. Establishment of Taqman Quantitative PCR System to Estimate Copy Numbers of Exogenous Transgene in Genome Edited Tomato[J]. China Biotechnology, 2017, 37(10): 72-80.
[4] YI Xue-rui, YUAN You-cheng, GONG Liang, ZHANG Xin-rui, LI Na, KONG Xiang-ping. The Inhibition of HBsAg of Natural Compounds and Bortezomib on Primary Hepatocytes of HBV-Tg Mice and the Proteome Analysis[J]. China Biotechnology, 2015, 35(11): 29-35.
[5] LI Fu-wei, ZHANG Shu-ya, REN Shuo, ZHANG Rui-hao, JIANG Yu, GU Shun-zhang, GE Xin, ZHANG Lei, BAO Jian-qiang. Detection of Gadiformes by Real-time PCR Assay[J]. China Biotechnology, 2012, 32(12): 80-85.
[6] LIU Wei-xia, CHEN Zhi. Study on the Inhibition of Hepatitis B Virus by Single-chain Fv Fragment[J]. China Biotechnology, 2011, 31(12): 104-108.
[7] E Guang-xin, LIU Di, ZHANG Dong-jie, CUI Yu. Cloning, Expression and Polymorphism Analysis of Porcine SRPK3 Gene[J]. China Biotechnology, 2011, 31(03): 46-54.
[8] SHAO Juan, CAO Ji-juan, LIU Yang, WANG Chang-wen, ZHAO Tong-tong, LI Jing-quan. Detection of Allergen Mustard Components in Food by Real-time Fluorescent PCR[J]. China Biotechnology, 2011, 31(01): 61-64.
[9] TANG Ling-ling, SHI Yu-ling, WANG Lu-xia, LI Lin-hai, SUN Zhao-hui, CHEN Li-dan, XU Shao-shan. Clinical Application of Rapid Detection of Pathogen of Gas Gangrene[J]. China Biotechnology, 2010, 30(12): 72-75.
[10] GUO Gong-Min, TUN Xiao-Ji, LI Xiang, ZHOU Yan-Rong, LIN Yan-Li, XIONG Fu-Yin, XUE Shi-Wei, CHEN Gong-Xing, CHEN Shu-Lin. Establishment of the Transgenic Mice Expressing the HBV Receptor Human ASGPR[J]. China Biotechnology, 2010, 30(05): 87-91.
[11] . Inhibition of Hepatitis B Virus by Small Interfering RNA Expressed from Adenovirus-associated Virus Vectors[J]. China Biotechnology, 2010, 30(04): 49-53.
[12] . The Genetic Stability of Replicating HBV Transgenic Mice[J]. China Biotechnology, 2008, 28(5): 17-21.
[13] . Development of a Real-time PCR Method to Detect Aspergillus nidulans[J]. China Biotechnology, 2008, 28(10): 95-99.
[14] . [J]. China Biotechnology, 1998, 18(3): 41-42,40.
[15] . [J]. China Biotechnology, 1997, 17(1): 56-58.