Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2014, Vol. 34 Issue (5): 100-106    DOI: 10.13523/j.cb.20140514
    
The Research Progress of Microbial Production of L-serine and L-cysteine
JIA Hui-hui1, LI Xiao-jing2, CHEN Tao1, ZHAO Xue-ming1
1 Key Laboratory of Systems Bioengineering Ministry of Education, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China;
2 College of Sevice, Naval University of Engineering Tianjin 300072, China
Download: HTML   PDF(545KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

L-serine and L-cysteine have broad applications in food, medicine, cosmetic industry, and so on, the precursor of which are both 3-phosphoglycerate in plants and microorganisms. Bio-based production of these two amino acids reveals bright prospects owing to the benefit of society, economy and environment. Focusing on the achievements in the microbial production of L-serine and L-cysteine, this review summarizes the hot spots of the researchers'attentions nowadays,which can be divided into four parts:the metabolic pathways and their regulation, export and transport systems of relative amino acids,production strains and metabolic engineered strains for producing L-serine and L-cysteine,development of new strains for L-serine and L-cysteine production. Finally, perspectives for developing serine-cysteine overproducers are suggested in view of the going forward of biotechnology.



Key wordsL-serine      L-cysteine      Metabolic engineering      Microbial fermentation     
Received: 26 March 2014      Published: 25 May 2014
ZTFLH:  Q815  
Cite this article:

JIA Hui-hui, LI Xiao-jing, CHEN Tao, ZHAO Xue-ming. The Research Progress of Microbial Production of L-serine and L-cysteine. China Biotechnology, 2014, 34(5): 100-106.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20140514     OR     https://manu60.magtech.com.cn/biotech/Y2014/V34/I5/100


[1] Snell K, Natsumeda Y, Weber G. The modulation of serine metabolism in hepatoma 3924A during different phases of cellular proliferation in culture. The Biochemical Journal, 1987, 245(2): 609-612.

[2] Tabatabaie L, Klom P L, Berger R, et al. L-serine synthesis in the central nervous system: a review on serine deficiency disorders. Molecular Genetics and Metabolism, 2010, 99(3): 256-262.

[3] Ohtsu I, Wiriyathanawudhiwong N, Morigasaki S, et al. The L-cysteine/L-cystine shuttle system provides reducing equivalents to the periplasm in Escherichia coli. Journal of Biological Chemistry, 2010, 285(23): 17479-17487.

[4] Ryu O H, Ju J Y, Shin C S. Continuous L-cysteine production using immobilized cell reactors and product extractors. Process Biochemistry, 1997, 32(3): 201-209.

[5] Chen N, Huang J, Feng Z-b, et al. Optimization of fermentation conditions for the biosynthesis of L-threonine by Escherichia coli. Applied Biochemistry and Biotechnology, 2009, 158(3): 595-604.

[6] Lee J H, Jung S-C, Bui L M, et al. Improved production of L-threonine in Escherichia coli by use of a DNA scaffold system. Applied and Environmental Microbiology, 2013, 79(3): 774-782.

[7] Park J H, Jang Y S, Lee J W, et al. Escherichia coli W as a new platform strain for the enhanced production of L-valine by systems metabolic engineering. Biotechnology and Bioengineering, 2011, 108(5): 1140-1147.

[8] Cheng L K, Wang J, Xu Q Y, et al. Effect of feeding strategy on L-tryptophan production by recombinant Escherichia coli. Annals of Microbiology, 2012, 62(4): 1625-1634.

[9] Leuchtenberger W, Huthmacher K, Drauz K. Biotechnological production of amino acids and derivatives: current status and prospects. Applied Microbiology and Biotechnology, 2005, 69(1): 1-8.

[10] Grant G A, Hu Z, Xu X L. Specific interactions at the regulatory domain-substrate binding domain interface influence the cooperativity of inhibition and effector binding in Escherichia coli D-3-phosphoglycerate dehydrogenase. The Journal of Biological Chemistry, 2001, 276(2): 1078-1083.

[11] Al-Rabiee R, Lee E J, Grant G A. The mechanism of velocity modulated allosteric regulation in D-3-phosphoglycerate dehydrogenase cross-linking adjacent regulatory domains with engineered mimics effector binding. Journal of Biological Chemistry, 1996, 271(22): 13013-13017.

[12] Peters-Wendisch P, Netzer R, Eggeling L, et al. 3-Phosphoglycerate dehydrogenase from Corynebacterium glutamicum: the C-terminal domain is not essential for activity but is required for inhibition by L-serine. Applied Microbiology and Biotechnology, 2002, 60(4): 437-441.

[13] Schweitzer J E, Stolz M, Diesveld R, et al. The serine hydroxymethyltransferase gene glyA in Corynebacterium glutamicum is controlled by GlyR. Journal of Biotechnology, 2009, 139(3): 214-221.

[14] Awano N, Wada M, Mori H, et al. Identification and functional analysis of Escherichia coli cysteine desulfhydrases. Applied and Environmental Microbiology, 2005, 71(7): 4149-4152.

[15] Wada M, Awano N, Haisa K, et al. Purification, characterization and identification of cysteine desulfhydrase of Corynebacterium glutamicum, and its relationship to cysteine production. FEMS microbiology letters, 2002, 217(1): 103-107.

[16] Sperandio B, Polard P, Ehrlich D S, et al. Sulfur amino acid metabolism and its control in Lactococcus lactis IL1403. Journal of Bacteriology, 2005, 187(11): 3762-3778.

[17] Wheeler P R, Coldham N G, Keating L,et al. Functional demonstration of reverse transsulfuration in the Mycobacterium tuberculosis complex reveals that methionine is the preferred sulfur source for pathogenic mycobacteria. Journal of Biological Chemistry, 2005, 280(9): 8069-8078.

[18] Denk D, Böck A. L-cysteine biosynthesis in Escherichia coli: nucleotide sequence and expression of the serine acetyltransferase (cysE) gene from the wild-type and a cysteine-excreting mutant. Journal of General Microbiology, 1987, 133(3): 515-525.

[19] Takagi H, Kobayashi C, Kobayashi S-i, et al. PCR random mutagenesis into Escherichia coli serine acetyltransferase: isolation of the mutant enzymes that cause overproduction of L-cysteine and L-cystine due to the desensitization to feedback inhibition. FEBS Letters, 1999, 452(3): 323-327.

[20] Takagi H, Awano N, Kobayashi S-i, et al. Overproduction of L-cysteine and L-cystine by expression of genes for feedback inhibition-insensitive serine acetyltransferase from Arabidopsis thaliana in Escherichia coli. FEMS Microbiology Letters, 1999, 179(2): 453-459.

[21] Nakatani T, Ohtsu I, Nonaka G, et al. Enhancement of thioredoxin/glutaredoxin-mediated L-cysteine synthesis from S-sulfocysteine increases L-cysteine production in Escherichia coli. Microbial Cell Factories, 2012.11(1): 62-71.

[22] Ogawa W, Kim Y-M, Mizushima T, et al. Cloning and expression of the gene for the Na+-coupled serine transporter from Escherichia coli and characteristics of the transporter. Journal of Bacteriology, 1998, 180(24): 6749-6752.

[23] Hama H, Shimamoto T, Tsuda M, et al. Characterization of a novel L-serine transport system in Escherichia coli. Journal of Bacteriology, 1988, 170(5): 2236-2239.

[24] Schneider F, Krmer R, Burkovski A. Identification and characterization of the main β-alanine uptake system in Escherichia coli. Applied Microbiology and Biotechnology, 2004, 65(5): 576-582.

[25] Franke I, Resch A, Daβler T, et al. YfiK from Escherichia coli promotes export of O-acetylserine and cysteine. Journal of Bacteriology, 2003,185(4): 1161-1166.

[26] Simic P, Sahm H, Eggeling L. L-threonine export: use of peptides to identify a new translocator from Corynebacterium glutamicum. Journal of Bacteriology, 2001, 183(18): 5317-5324.

[27] Zhang X, Newman E. Deficiency in L-serine deaminase results in abnormal growth and cell division of Escherichia coli K-12. Molecular Microbiology, 2008, 69(4): 870-881.

[28] Zhang X, El-Hajj Z W, Newman E. Deficiency in L-serine deaminase interferes with one-carbon metabolism and cell wall synthesis in Escherichia coli K-12. Journal of Bacteriology, 2010, 192(20): 5515-5525.

[29] Park S, Imlay J A. High levels of intracellular cysteine promote oxidative DNA damage by driving the Fenton reaction. Journal of Bacteriology, 2003, 185(6): 1942-1950.

[30] Daβler T, Maier T, Winterhalter C, et al. Identification of a major facilitator protein from Escherichia coli involved in efflux of metabolites of the cysteine pathway. Molecular Microbiology, 2000, 36(5): 1101-1112.

[31] Yamada S, Awano N, Inubushi K, et al. Effect of drug transporter genes on cysteine export and overproduction in Escherichia coli. Applied and Environmental Microbiology, 2006, 72(7): 4735-4742.

[32] Wiriyathanawudhiwong N, Ohtsu I, Li Z D, et al. The outer membrane TolC is involved in cysteine tolerance and overproduction in Escherichia coli. Applied Microbiology and Biotechnology, 2009, 81(5): 903-913.

[33] Gerdes SY, Scholle MD, Campbell JW, et al. Experimental determination and system level analysis of essential genes in Escherichia coli MG1655. Journal of Bacteriology, 2003, 185(19): 5673-5684.

[34] Simic P, Willuhn J, Sahm H, et al. Identification of glyA (encoding serine hydroxymethyltransferase) and its use together with the exporter ThrE to increase L-threonine accumulation by Corynebacterium glutamicum. Applied and Environmental Microbiology, 2002, 68(7): 3321-3327.

[35] Keune H, Sahm H, Wagner F. Production of L-serine by the methanol utilizing bacterium, Pseudomonas 3ab. European Journal of Applied Microbiology and Biotechnology, 1976, 2(3): 175-184.

[36] Tani Y, Kanagawa T, Ogata K, et al. Production of L-serine by a methanol-utilizing bacterium, Arthrobacter globiformis SK-200. Agricultural and Biological Chemistry, 1978, 42.

[37] Yamada H, Miyazaki S S, Izumi Y. L-serine production by a glycine-resistant mutant of methylotrophic Hyphomicrobium methylovorum. Agricultural and Biological Chemistry, 1986, 50(1): 17-21.

[38] Hagishita T, Yosi-nDA T, IzU1vu Y, et al. Efficient L-serine production from methanol and glycine by resting cells of Methylobacterium sp. strain MN43. Bioscience biotechnology and Biochemstry, 1996, 60(10): 1604-1607.

[39] 左爱连, 张伟国. L-丝氨酸高产菌的选育及其发酵条件. 化工进展, 2008, 27(9): 1408-1411. Zuo A L, Zhang W G. Breeding of L-serine-producing mutant and its fermentation conditions in shake-flask culture. Chemical Industry and Engineering Progress, 2008, 27(9): 1408-1411.

[40] Shen P, Chao H, Jiang C, et al. Enhancing production of L-serine by increasing the glyA gene expression in Methylobacterium sp. MB200. Applied Biochemistry and Biotechnology, 2010, 160(3): 740-750.

[41] Ema M, Kakimoto T, Chibata I. Production of L-serine by Sarcina albida. Applied and Environmental Microbiology, 1979, 37(6): 1053-1058.

[42] Omori K, Kakimoto T, Chibata I. L-serine production by a mutant of Sarcina albida defective in L-serine degradation. Applied and Environmental Microbiology, 1983, 45(6): 1722-1726.

[43] Jiang W, Xia B, Huang J, et al. Characterization of a serine hydroxymethyltransferase for L-serine enzymatic production from Pseudomonas plecoglossicida. World Journal of Microbiology & Biotechnology, 2013, 29(11): 2067-2076.

[44] Jiang W, Xia B, Liu Z. A serine hydroxymethyltransferase from marine bacterium Shewanella algae: Isolation, purification, characterization and L-serine production. Microbiological Research, 2013, 168(8): 477-484.

[45] Hibino W, Ito M, Nakamatsu T, et al. Method of producing L-serine by fermentation. Japan, 99100325.2, 1999-07-28.

[46] Peters-Wendisch P, Stolz M, Etterich H, et al. Metabolic engineering of Corynebacterium glutamicum for L-serine production. Applied and Environmental Microbiology, 2005, 71(11): 7139-7144.

[47] Stolz M, Peters-Wendisch P, Etterich H, et al. Reduced folate supply as a key to enhanced L-serine production by Corynebacterium glutamicum. Applied and Environmental Microbiology, 2007, 73(3): 750-755.

[48] 来书娟, 张芸, 刘树文, 等. 产 L-丝氨酸谷氨酸棒杆菌的代谢工程改造和代谢流分析. 中国科学:生命科学, 2012, 42(4): 295-303. Lai S J, Zhang Y, Liu S W, et al. Metabolic engineering and flux analysis of Corynebacterium glutamicum for L-serine production. Science China: Life Sciences, 2012, 42(4): 295-303.

[49] Lv G Y, Wang P, He J Y, et al. Medium optimization for enzymatic production of L-cysteine by Pseudomonas sp. zjwp-14 using response surface methodology. Food Technology. Biotechnology, 2008, 46(4): 395-401.

[50] Park J H, Oh J E, Lee K H, et al. Rational design of Escherichia coli for L-isoleucine production. ACS Synthetic Biology, 2012, 1(11): 532-540.

[51] Santos CN, Xiao W, Stephanopoulos G. Rational, combinatorial, and genomic approaches for engineering L-tyrosine production in Escherichia coli. Proceedings of the Mational Academy of Sciences of the United States of America, 2012, 109(34): 13538-13543.

[1] MA Ning,WANG Han-jie. Advances of Optogenetics in the Regulation of Bacterial Production[J]. China Biotechnology, 2021, 41(9): 101-109.
[2] MIAO Yi-nan,LI Jing-zhi,WANG Shuai,LI Chun,WANG Ying. Research Progress of Key Enzymes in Terpene Biosynthesis[J]. China Biotechnology, 2021, 41(6): 60-70.
[3] LI Yuan-yuan,LI Yan,CAO Ying-xiu,SONG Hao. Research and Strategies of Flavins-mediated Extracellular Electron Transfer[J]. China Biotechnology, 2021, 41(10): 89-99.
[4] YAN Wei-huan,HUANG Tong,HONG Jie-fang,MA Yuan-yuan. Recent Advances in Butanol Biosynthesis of Escherichia coli[J]. China Biotechnology, 2020, 40(9): 69-76.
[5] XUE Yan-ting,WU Sheng-bo,XU Cheng-yang,YUAN Bo-xin,YANG Shu-juan,LIU Jia-heng,QIAO Jian-jun,ZHU Hong-ji. Research Progress on the Quorum Sensing in the Dynamic Metabolic Regulation[J]. China Biotechnology, 2020, 40(6): 74-83.
[6] LIU Jin-cong,LIU Xue,YU Hong-jian,ZHAO Guang-rong. Recent Advances in Microbial Production of Phloretin and Its Glycosides[J]. China Biotechnology, 2020, 40(10): 76-84.
[7] Si-li YU,Xue LIU,Zhao-yu ZHANG,Hong-jian YU,Guang-rong ZHAO. Advances of Betalains Biosynthesis and Metabolic Regulation[J]. China Biotechnology, 2018, 38(8): 84-91.
[8] Li-na CHENG,Hai-yan LU,Shu-ling QU,Yi-qun ZHANG,Juan-juan DING,Shao-lan ZOU. Production of Cyclic Adenosine Monophosphate (cAMP) by Microbial Fermentation——A Review[J]. China Biotechnology, 2018, 38(2): 102-108.
[9] ZHAO Xiu-li, ZHOU Dan-dan, YAN Xiao-guang, WU Hao, CAIYIN Qing-gele, LI Yan-ni, QIAO Jian-jun. Regulation and Application in Metabolic Engineering of Bacterial Small RNAs[J]. China Biotechnology, 2017, 37(6): 97-106.
[10] GAO Jiao-jiao, YANG Shu-lin. Advances in the Production of High Molecular Weight Hyaluronic Acid by Microbial Fermentation[J]. China Biotechnology, 2017, 37(5): 118-125.
[11] YU Xiao-chun, MA Shi-liang. Advances in Research of Aspergillus oryzae as a Host of Heterologous Protein Expression[J]. China Biotechnology, 2016, 36(9): 94-100.
[12] LI Xiao-bo, LIU Xue, ZHAO Guang-rong. Advances on Flavonoid Glycosides Production of Engineered Microorganisms[J]. China Biotechnology, 2016, 36(8): 105-112.
[13] GAO Cui-juan, LIN Carol Sze-ki, QI Qing-sheng. Production of Medium-chain-length Polyhydroxyalkanoates by Recombinant Yarrowia lipolytica Through Metabolic Engineering[J]. China Biotechnology, 2016, 36(5): 53-58.
[14] LIANG Xin-quan, LI Ning, REN Qin, LIU Ji-dong. Progress in the Metabolic Engineering of Saccharomyces cerevisiae for L-lactic Acid Production[J]. China Biotechnology, 2016, 36(2): 109-114.
[15] FANG Li xia, CAO Ying xiu, SONG Hao. Engineering Escherichia coli to Synthesize Free Fatty Acids: A Recent Progress[J]. China Biotechnology, 2016, 36(11): 90-97.