Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2014, Vol. 34 Issue (5): 92-99    DOI: 10.13523/j.cb.20140513
    
Research Progress on Bioethanol Production with Microalgae as Feedstocks
LI Xie-kun1,2, ZHOU Wei-zheng1, GUO Ying1, WU Hao1, XU Jing-liang1, YUAN Zhen-hong1
1 Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Key Laboratory of Renewable Energy, CAS, Guangzhou 510640, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China
Download: HTML   PDF(508KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Fuel ethanol as excellent renewable liquid fuel, has received widespread attention for its exceptional performance. Microalgae is one of the best biomass resources with high photosynthetic efficiency and high biomass yield. Microalgae rich in starch, polysaccharides, cellulose(Iα)and other substances can be used as excellent feedstock for fuel ethanol production with traditional ethanol production technology after simple treatment. Fuel ethanol production with microalgae can alleviate China’s growing energy problems, and reduce greenhouse gas emissions and environmental pollution. The recent research progress on microalgae ethanol reviewed and proposed its developmental potential.



Key wordsMicroalgae      Fuel ethanol      Biomass      Biofuel     
Received: 26 March 2014      Published: 25 May 2014
ZTFLH:  Q815  
Cite this article:

LI Xie-kun, ZHOU Wei-zheng, GUO Ying, WU Hao, XU Jing-liang, YUAN Zhen-hong. Research Progress on Bioethanol Production with Microalgae as Feedstocks. China Biotechnology, 2014, 34(5): 92-99.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20140513     OR     https://manu60.magtech.com.cn/biotech/Y2014/V34/I5/92


[1] Waltz E. Biotech's green gold?. Nat Biotechnol, 2009, 27(1): 15-18.

[2] Borines M G, De Leon R L, Mchenry M P. Bioethanol production from farming non-food macroalgae in Pacific island nations: Chemical constituents, bioethanol yields, and prospective species in the Philippines. Renewable and Sustainable Energy Reviews, 2011, 15(9): 4432-4435.

[3] John R P, Anisha G S, Nampoothiri K M, et al. Micro and macroalgal biomass: a renewable source for bioethanol. Bioresour Technol, 2011, 102(1): 186-193.

[4] Smith V H, Sturm B S M, Denoyelles F J, et al. The ecology of algal biodiesel production. Trends in Ecology & Evolution, 2010, 25(5): 301-309.

[5] Costa J A, De Morais M G. The role of biochemical engineering in the production of biofuels from microalgae. Bioresour Technol, 2011, 102(1): 2-9.

[6] Chisti Y. Biodiesel from microalgae beats bioethanol. Trends Biotechnol, 2008, 26(3): 126-131.

[7] Chen W, Zhang C, Song L, et al. A high throughput Nile red method for quantitative measurement of neutral lipids in microalgae. Journal of Microbiological Methods, 2009, 77(1): 41-47.

[8] Daroch M, Geng S, Wang G. Recent advances in liquid biofuel production from algal feedstocks. Applied Energy, 2013, 102: 1371-1381.

[9] Mussatto S I, Dragone G, Guimaraes PM, et al. Technological trends, global market, and challenges of bio-ethanol production. Biotechnol Adv, 2010, 28(6): 817-830.

[10] Choi S P, Nguyen M T, Sim S J. Enzymatic pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. Bioresour Technol, 2010, 101(14): 5330-5336.

[11] Hirayama S, Ueda R, Ogushi Y, et al. Ethanol production from carbon dioxide by fermentative microalgae. Studies in Surface Science and Catalysis: Elsevier, 1998: 657-660.

[12] Doucha J, Lívansky K. Outdoor open thin-layer microalgal photobioreactor: potential productivity. Journal of Applied Phycology, 2009, 21(1): 111-117.

[13] Harun R, Danquah M K. Enzymatic hydrolysis of microalgal biomass for bioethanol production. Chemical Engineering Journal, 2011, 168(3): 1079-1084.

[14] Harun R, Danquah M K. Influence of acid pre-treatment on microalgal biomass for bioethanol production. Process Biochemistry, 2011, 46(1): 304-309.

[15] Miranda J R, Passarinho PC, Gouveia L. Pre-treatment optimization of Scenedesmus obliquus microalga for bioethanol production. Bioresour Technol, 2012, 104: 342-348.

[16] Ho S H, Huang S W, Chen C Y, et al. Bioethanol production, using carbohydrate-rich microalgae biomass as feedstock. Bioresource Technology, 2013, 135: 191-198.

[17] Zhou N, Zhang Y, Wu X, et al. Hydrolysis of Chlorella biomass for fermentable sugars in the presence of HCl and MgCl2. Bioresour Technol, 2011, 102(21): 10158-10161.

[18] Kim J K, Um B H, Kim T H. Bioethanol production from micro-algae, Schizocytrium sp., using hydrothermal treatment and biological conversion. Korean Journal of Chemical Engineering, 2012, 29(2): 209-214.

[19] 黄伟. 氮胁迫下Chlorella zofingiensis碳水化合物与脂肪酸合成规律研究. 北京: 中国科学院大学, 2013. Huang W. Synthesis Patterns of Carbohydrate and Fatty Acid under Nitrogen Stress of Microalgae Chlorella Zofingiensis. Beijing: University of Chinese Academy of Sciences, 2013.

[20] Shekharam K M, Venkataraman L V, Salimath PV. Carbohydrate composition and characterization of two unusual sugars from the blue green alga Spirulina platensis. Phytochemistry, 1987, 26(8): 2267-2269.

[21] Kumar K, Dasgupta C N, Nayak B, et al. Development of suitable photobioreactors for CO2 sequestration addressing global warming using green algae and cyanobacteria. Bioresource Technology, 2011, 102(8): 4945-4953.

[22] Bonente G, Formighieri C, Mantelli M, et al. Mutagenesis and phenotypic selection as a strategy toward domestication of Chlamydomonas reinhardtii strains for improved performance in photobioreactors. Photosynth Res, 2011, 108(2-3): 107-120.

[23] Aruna M. Mutagenic studies in a filamentous alga, employing a chemical mutagen-ethylmethane sulphonate. Journal of Phytology, 2012, 4(2): 01-05.

[24] Vuttipongchaikij S. Genetic manipulation of microalgae for improvement of biodiesel production. Thai J. Genet, 2012, 5(2): 130-148.

[25] 邢翔,张小葵,杜宗军,等. 两种生物反应器高密度培养小球藻研究. 科技导报, 2008, 26(23): 56-58. Xing X, Zhang X K, Du Z J, et al. Novel Cultivation Method for Chlorella. Science & Technology Review, 2008, 26(23): 56-58.

[26] Dibenedetto A. The potential of aquatic biomass for CO2-enhanced fixation and energy production. Greenhouse Gases-Science and Technology, 2011, 1(1): 58-71.

[27] Ono E, Cuello J L. Carbon Dioxide Mitigation using Thermophilic Cyanobacteria. Biosystems Engineering, 2007, 96(1): 129-134.

[28] Galloway R A, Gauch H G, Soeder C J. Effects of Inhibitory Levels of CO2 on Chlorella. Plant Physiology, 1964, 39: R8-&.

[29] Šetlík I, Ballin G, Doucha J, et al. Macromolecular syntheses and the course of cell cycle events in the chlorococcal algascenedesmus quadricauda under nutrient starvation: Effect of sulphur starvation. Biologia Plantarum, 1988, 30(3): 161-169.

[30] Da Silva A F, Lourenço S O, Chaloub R M. Effects of nitrogen starvation on the photosynthetic physiology of a tropical marine microalga Rhodomonas sp. (Cryptophyceae). Aquatic Botany, 2009, 91(4): 291-297.

[31] Arad S. Predation by a dinoflagellate on a red microalga with a cell wall modified by sulfate and nitrate starvation. Mar. Ecol. Prog. Ser, 1993, 104: 293-298.

[32] Dragone G, Fernandes B D, Abreu A P, et al. Nutrient limitation as a strategy for increasing starch accumulation in microalgae. Applied Energy, 2011, 88(10): 3331-3335.

[33] Ho S H, Chen C Y, Chang J S. Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresour Technol, 2012, 113: 244-252.

[34] Arad S, Lerental Y, Dubinsky O. Effect of nitrate and sulfate starvation on polysaccharide formation in rhodella reticulata. Bioresource Technology, 1992, 42(2): 141-148.

[35] Allen A E, Laroche J, Maheswari U, et al. Whole-cell response of the pennate diatom Phaeodactylum tricornutum to iron starvation. Proceedings of the National Academy of Sciences, 2008, 105(30): 10438-10443.

[36] 尹逊栋,葛蔚,柴超,等. 营养条件对四种海洋微藻生化组分的影响. 水产科学, 2012, 31(11): 640-644. Yin X D, Ge W, Chai CH, et al. Effects of Nutrient Conditions on Biochemical Compositions in Four Species of Marine Alage. Fisheries Science, 2012, 31(11): 640-644.

[37] Hardie L P, Balkwill D L, Stevens S E. Effects of Iron Starvation on the Physiology of the Cyanobacterium Agmenellum quadruplicatum. Appl Environ Microbiol, 1983, 45(3): 999-1006.

[38] Douskova I, Doucha J, Livansky K, et al. Simultaneous flue gas bioremediation and reduction of microalgal biomass production costs. Applied Microbiology and Biotechnology, 2009, 82(1): 179-185.

[39] De-Bashan L E, Bashan Y. Immobilized microalgae for removing pollutants: Review of practical aspects. Bioresource Technology, 2010, 101(6): 1611-1627.

[40] 胡庆明. 石家庄炼厂废气养殖微藻获得成功. 石油石化节能, 2013, 9: 37. Hu Q M. Microalgae Cultivation with Refinery gas Get Success in Shijiazhuang. Foreign Oilfield Engineering, 2013, 9: 37.

[41] 徐少琨,张峰,向文洲,等. 微藻应用于煤炭烟气减排的研究进展. 地球科学进展, 2011, 26(9): 944-953. Xu S K, Zhang F, Xiang W Z, et al. Progress in the Study of Removal from Coal Fired Flue Gas by Microalgaae. Advances in Earth Science, 2011, 26(9): 944-953.

[42] Chinnasamy S, Bhatnagar A, Hunt R W, et al. Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresource Technology, 2010, 101(9): 3097-3105.

[43] 沈丹丹. 富油及富淀粉微藻培养与奶牛场废水处理相结合的效果研究. 广州: 暨南大学, 2013. Sheng D D. Integrated the Biomass Production of Oleaginous and Starch-rich Microalgae and Dairy Wastewater Treatment. Guangzhou: Jinan University, 2013.

[44] Chen Paul, Min M, Chen Y F,et al. Review of the biological and engineering aspects of algae to fuels approach, 2009.

[45] Ugwu C U, Aoyagi H, Uchiyama H. Photobioreactors for mass cultivation of algae. Bioresour Technol, 2008, 99(10): 4021-4028.

[46] Singh R N, Sharma S. Development of suitable photobioreactor for algae production - A review. Renewable and Sustainable Energy Reviews, 2012, 16(4): 2347-2353.

[47] Brennan L, Owende P. Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews, 2010, 14(2): 557-577.

[48] 孙丽英,何皓,田宜水,等. 微藻规模化生产的关键问题. 可再生能源, 2012, 30(9): 70-79. Sun L Y, He G, Tian Y SH, et al. Key issues discussion of large-scale production of microalgae. Renewable Energy Resources, 2012, 30(9): 70-79.

[49] Chisti Y. Biodiesel from microalgae. Biotechnol Adv, 2007, 25(3): 294-306.

[50] Fernandes B D, Dragone G M, Teixeira J A, et al. Light regime characterization in an airlift photobioreactor for production of microalgae with high starch content. Appl Biochem Biotechnol, 2010, 161(1-8): 218-226.

[51] Eriksen N T, Riisgard F K, Gunther W S, et al. On-line estimation of O(2) production, CO(2) uptake, and growth kinetics of microalgal cultures in a gas-tight photobioreactor. J Appl Phycol, 2007, 19(2): 161-174.

[52] Brányiková I, Marálková B, Doucha J, et al. Microalgae—novel highly efficient starch producers. Biotechnology and Bioengineering, 2011, 108(4): 766-776.

[53] 庞通,刘建国,林伟,等. 藻类生物燃料乙醇制备的研究进展. 渔业现代化, 2012, 39(5): 63-71. Pang T, Liu J G, Lin W, et al. Advances on the algae to bioethanol technologies. Fishery Modernization, 2012, 39(5): 63-71.

[54] Chen P, Min M, Chen Y, et al. Review of biological and engineering aspects of algae to fuels approach. International Journal of Agricultural and Biological Engineering, 2010, 2(4): 1-30.

[55] Chen C Y, Yeh K L, Aisyah R, et al. Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review. Bioresource Technology, 2011, 102(1): 71-81.

[56] Heasman M, Diemar J, O'connor W, et al. Development of extended shelf-life microalgae concentrate diets harvested by centrifugation for bivalve molluscs - a summary. Aquaculture Research, 2000, 31(8-9): 637-659.

[57] Molina G E, Belarbi E H, Acien F F G, et al. Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv, 2003, 20(7-8): 491-515.

[58] Lee S J, Kim S H, Kim J E, et al. Effects of harvesting method and growth stage on the flocculation of the green alga Botryococcus braunii. Letters in Applied Microbiology, 1998, 27(1): 14-18.

[59] Harun R, Singh M, Forde G M, et al. Bioprocess engineering of microalgae to produce a variety of consumer products. Renewable and Sustainable Energy Reviews, 2010, 14(3): 1037-1047.

[60] Cheng Y L, Juan Y C, Liao G Y, et al. Harvesting of Scenedesmus obliquus FSP-3 using dispersed ozone flotation. Bioresource Technology, 2011, 102(1): 82-87.

[61] 张海阳,匡亚丽,林喆. 能源微藻采收技术研究进展. 化工进展, 2013, 32(9): 2092-2098. Zhang H Y, Kuang L Y, Lin Z. Research progress of harvesting technologies of energymicroalgae. Chemical Industry and Engineering Progress, 2013,32(9): 2092-2098.

[62] 薛蓉,陆向红,卢美贞,等. 絮凝法采收小球藻的研究. 可再生能源, 2012, 30(9): 80-84. Xue R, Lu X H, Lu M Z, et al. The study on recovery of Chlorella by flocculation method. Renewable Energy Resources, 2012, 30(9): 80-84.

[63] Lee S, Oh Y, Kim D, et al. Converting carbohydrates extracted from marine algae into ethanol using various ethanolic Escherichia coli strains. Appl Biochem Biotechnol, 2011, 164(6): 878-888.

[64] Nguyen M T, Choi S P, Lee J, et al. Hydrothermal Acid Pretreatment of Chlamydomonas reinhardtii Biomass for Ethanol Production. Journal of Microbiology and Biotechnology, 2009, 19(2): 161-166.

[65] Harun R, Jason W S Y, Cherrington T, et al. Exploring alkaline pre-treatment of microalgal biomass for bioethanol production. Applied Energy, 2011, 88(10): 3464-3467.

[66] Yu Y, Lou X, Wu H W. Some recent advances in hydrolysis of biomass in hot-compressed, water and its comparisons with other hydrolysis methods. Energy & Fuels, 2008, 22(1): 46-60.

[67] 余强,庄新姝,袁振宏,等. 木质纤维素类生物质高温液态水预处理技术. 化工进展, 2010, 29(11): 2177-2182. Yu Q, Zhuang X SH, Yuan Z H, et al. Pretreatment of lignocellulosic biomass with liquid hot water. Chemical Industry and Engineering Progress, 2010, 29(11): 2177-2182.

[68] Okuda K, Oka K, Onda A, et al. Hydrothermal fractional pretreatment of sea algae and its enhanced enzymatic hydrolysis. Journal of Chemical Technology & Biotechnology, 2008, 83(6): 836-841.

[69] Fu C C, Hung T C, Chen J Y, et al. Hydrolysis of microalgae cell walls for production of reducing sugar and lipid extraction. Bioresour Technol, 2010, 101(22): 8750-8754.

[70] Rodrigues M A, Da Silva Bon E P. Evaluation of Chlorella (Chlorophyta) as source of fermentable sugars via cell wall enzymatic hydrolysis. Enzyme Res, 2011, 2011: 405603.

[71] Zhou N, Zhang Y, Gong X, et al. Ionic liquids-based hydrolysis of Chlorella biomass for fermentable sugars. Bioresour Technol, 2012, 118: 512-517.

[72] Bai F W, Anderson W A, Moo-Young M. Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnol Adv, 2008, 26(1): 89-105.

[73] Enquist-Newman M, Faust A M, Bravo D D, et al. Efficient ethanol production from brown macroalgae sugars by a synthetic yeast platform. Nature, 2014, 505(7482): 239-243.

[74] Kim N J, Li H, Jung K, et al. Ethanol production from marine algal hydrolysates using Escherichia coli KO11. Bioresour Technol, 2011, 102(16): 7466-7469.

[75] Lee S, Oh Y, Kim D, et al. Converting Carbohydrates extracted from marine algae into ethanol using various ethanolic Escherichia coli strains. Applied Biochemistry and Biotechnology, 2011, 164(6): 878-888.

[76] Hirano A, Ueda R, Hirayama S, et al. CO2 fixation and ethanol production with microalgal photosynthesis and intracellular anaerobic fermentation. Energy, 1997, 22(2-3): 137-142.

[77] Ueda R, Hirayama S, Sugata K, et al. Process for the production of ethanol from microalgae. US Patent 5,578,472, 1996.

[78] Doan Q C, Moheimani N R, Mastrangelo A J, et al. Microalgal biomass for bioethanol fermentation: Implications for hypersaline systems with an industrial focus. Biomass and Bioenergy, 2012, 46: 79-88.

[1] Zhi-jin WEI,Xiao LI,Hao-nan WANG,Yong-hao YIN,Li-jun XI,Bao-sheng GE. Enhanced Biomass Production and Lipid Accumulation by Co-cultivation of Chlorella vulgaris with Azotobacter Mesorhizobium sp.[J]. China Biotechnology, 2019, 39(7): 56-64.
[2] Zheng-san ZUO,Xiao-man SUN,Lu-jing REN,He HUANG. Improvement of Lipid Accumulation in Microalgae by Novel Cultivation Strategies[J]. China Biotechnology, 2018, 38(7): 102-109.
[3] Meng-tong QIN,Jing HU,Guan-hua LI. Recent Developments and Future Prospect of Biological Pretreatment[J]. China Biotechnology, 2018, 38(5): 85-91.
[4] WANG Cai-xia, ZHANG Teng-jiang, TENG Jie, FENG Xu-dong, LI Chun. The Efficient Carbon-oxygen Transformation and Regulation of Desert Microalgaes[J]. China Biotechnology, 2016, 36(10): 45-52.
[5] YANG Kai, ZHAN Jing-ming, GAO Fen-fang, WU Bao-li, SU Li-xia, ZHOU Wen-ming, XUE Xiang-ming, HAO Jie, ZHAO Yang. Research of Chlorella on the Production of Biodiesel[J]. China Biotechnology, 2015, 35(11): 99-104.
[6] LI Lan, WANG Ze-Jian, JIN Yong, SUN Wen-hua, ZHUANG Ying-ping, ZHANG Si-liang. Study on On-line Capacitance Measurement to Evaluate the Viable Biomass During the Fermentation of Pichia[J]. China Biotechnology, 2014, 34(3): 91-95.
[7] LI Yun-cheng, TANG Yue-qin, KIDA Kenji. Application of OMICS Technology in Construction of Saccharomyces cerevisiae Strains for Ethanol Production[J]. China Biotechnology, 2014, 34(2): 118-128.
[8] LIU Ai-jun, SHI Shou-kun, LI Lan, WANG Ping, WANG Wei, JIA Jun-qiao, WANG Ze-jian, LI Hai-dong, ZHUANG Ying-ping, ZHANG Si-liang. Studies on the Measurement of Viable Biomass in the Optimization of Rifamycins SV Fermentation Process[J]. China Biotechnology, 2014, 34(10): 73-78.
[9] WANG Gui-lin, GUI Xiao-hua, DENG Wei, ZHAO Zhi-liang, YAO Jie, YAN Yun-jun. Two Step Cultivation Mode with “Heterotrophy-stress” for Chlorella Protothecoides Biomass and Lipid Content[J]. China Biotechnology, 2013, 33(3): 99-104.
[10] LI Yong-fu, MENG Fan-ping, LI Xiang-lei, MA Dong-dong. Effect of Illumination on Microalgae Cultured at High Cell Density in Photo-bioreactor[J]. China Biotechnology, 2013, 33(2): 103-110.
[11] LIU Hua-qing, LI Hao. Research Progress on Prevention and Controlling of Bacterial Contamination in Biomass Fermentation[J]. China Biotechnology, 2013, 33(12): 114-120.
[12] QIAN Long, TANG Li-wei, HUANG Shu-shi, Chagan Irbis. Research Progress of Bioethanol from Alginate Fermentation[J]. China Biotechnology, 2013, 33(1): 122-127.
[13] YANG Qiu-ling, JI Jing, WANG Gang, WU Wei-dan, HUO Pei. Traits Analysis of Maize with the Psy and Lycb[J]. China Biotechnology, 2012, 32(12): 52-58.
[14] HU Wen-jun, LUO Wei, LI Han-guang, GU Qiu-ya, YU Xiao-bin. Study on Screening and Identification of Oleaginous Microalgae and Its Oil-producing Charateristic[J]. China Biotechnology, 2012, 32(12): 66-72.
[15] YANG Qi, WANG Ke-rong, KONG Wei-bao, YANG Hong, CAO Hai, ZHANG Xin-yun. Optimization of the Mixotrophic Culture Medium Composition for Biomass Production by Chlorella vulgaris Using Response Surface Methodology[J]. China Biotechnology, 2012, 32(09): 70-75.