Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2018, Vol. 38 Issue (7): 102-109    DOI: 10.13523/j.cb.20180714
    
Improvement of Lipid Accumulation in Microalgae by Novel Cultivation Strategies
Zheng-san ZUO1,Xiao-man SUN2,Lu-jing REN2,**(),He HUANG3
1 Nanjing North Shengrong Energy Technology Co. Ltd, Nanjing 211178,China
2 College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
3 School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
Download: HTML   PDF(545KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Microalgae have received growing interest as a potential biofuel feedstock, which has been regarded as a promising alternative source for next-generation renewable fuels. However, the commercial use of microalgae for sustainable biofuel faces some challenges due to low productivity and high cost. For this reason, two-stage cultivation and co-cultivation strategies were developed to improve the lipid yield. Besides changing the cultivation modes, more simple approach, addition of chemical additives or plant growth regulator are emerging as the potential lipid enhancing strategies. The principle and method of various novel technologies for improving microalgal lipid production were described and discussed.



Key wordsMicroalgae      Lipid      Cultivation strategy      Oxidative damage      Phytohormone     
Received: 27 March 2018      Published: 13 August 2018
ZTFLH:  Q54  
Corresponding Authors: Lu-jing REN     E-mail: renlujing@njtech.edu.cn
Cite this article:

Zheng-san ZUO,Xiao-man SUN,Lu-jing REN,He HUANG. Improvement of Lipid Accumulation in Microalgae by Novel Cultivation Strategies. China Biotechnology, 2018, 38(7): 102-109.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20180714     OR     https://manu60.magtech.com.cn/biotech/Y2018/V38/I7/102

Fig.1 Proposed interaction mechanism between microalgae and other microorganisms
[1]   郑洪立, 张齐, 马小琛 , 等. 产生物柴油微藻培养研究进展. 中国生物工程杂志, 2009,29(3):110-116.
[1]   Zheng H L, Zhang Q, Ma X C , et al. Research progress on biodiesel-producing microalgae cultivation. China Biotechnology, 2009,29(3):110-116.
[2]   Chisti Y . Biodiesel from microalgae. Biotechnology Advances. 2007,25(3):294-306.
doi: 10.1016/j.biotechadv.2007.02.001
[3]   D’Alessandro E B, Filho N R A . Concepts and studies on lipid and pigments of microalgae: a review. Renewable & Sustainable Energy Reviews, 2016,58:832-841.
doi: 10.1016/j.rser.2015.12.162
[4]   Rasool S, Hameed A, Azooz M M , et al. Salt stress: causes, types and responses of plants. New York: Springer New York, 2013.
[5]   Li T, Zheng Y, Yu L , et al. High productivity cultivation of a heat-resistant microalga Chlorella sorokiniana for biofuel production. Bioresource Technology, 2013,131(2):60-67.
doi: 10.1016/j.biortech.2012.11.121
[6]   Sulochana S B, Arumugam M . Influence of abscisic acid on growth, biomass and lipid yield of Scenedesmus quadricauda under nitrogen starved condition. Bioresource Technology, 2016,213:198-203.
doi: 10.1016/j.biortech.2016.02.078
[7]   Hu Q A, Sommerfeld M, Jarvis E , et al. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant Journal, 2008,54(4):621-639.
doi: 10.1111/j.1365-313X.2008.03492.x pmid: 18476868
[8]   Ra C H, Kang C H, Na K K , et al. Cultivation of four microalgae for biomass and oil production using a two-stage culture strategy with salt stress. Renewable Energy, 2015,80:117-122.
doi: 10.1016/j.renene.2015.02.002
[9]   Chen B, Wan C, Mehmood M A , et al. Manipulating environmental stresses and stress tolerance of microalgae for enhanced production of lipids and value-added products——a review. Bioresource Technology, 2017,244:1198-1206.
doi: 10.1016/j.biortech.2017.05.170
[10]   Ra C H, Kang C H, Jung J H , et al. Effects of light-emitting diodes (leds) on the accumulation of lipid content using a two-phase culture process with three microalgae. Bioresource Technology, 2016,212:254-261.
doi: 10.1016/j.biortech.2016.04.059
[11]   Mitra M, Patidar S K, Mishra S . Integrated process of two stage cultivation of Nannochloropsis sp. for nutraceutically valuable eicosapentaenoic acid along with biodiesel. Bioresource Technology, 2015,193:363-369.
doi: 10.1016/j.biortech.2015.06.033
[12]   汪桂林, 桂小华, 邓伟 , 等. “异养-胁迫”分段培养对原始小球藻生物量和油脂含量影响研究. 中国生物工程杂志, 2013,33(3):99-104.
[12]   Wang G L, Gui X H, Deng W , et al. Two step cultivation mode with “heterotrophy-stress” for Chlorella protothecoides biomass and lipid content. China Biotechnology, 2013,33(3):99-104.
[13]   Xiong W, Gao C, Yan D , et al. Double Co(2) fixation in photosynthesis-fermentation model enhances algal lipid synthesis for biodiesel production. Bioresource Technology, 2010,101(7):2287-2293.
doi: 10.1016/j.biortech.2009.11.041
[14]   Fan J, Huang J, Li Y , et al. Sequential heterotrophy-dilution-photoinduction cultivation for efficient microalgal biomass and lipid production. Bioresource Technology, 2012,112(5):206-211.
doi: 10.1016/j.biortech.2012.02.046
[15]   Han F, Huang J, Li Y , et al. Enhancement of microalgal biomass and lipid productivities by a model of photoautotrophic culture with heterotrophic cells as seed. Bioresource Technology, 2012,118(4):431-437.
doi: 10.1016/j.biortech.2012.05.066
[16]   Li Y, Xu H, Han F , et al. Regulation of lipid metabolism in the green microalga Chlorella protothecoides by heterotrophy-photoinduction cultivation regime. Bioresource Technology, 2014,192(6):781-791.
[17]   Cheirsilp B, Suwannarat W, Niyomdecha R . Mixed culture of oleaginous yeast Rhodotorula glutinis and microalga Chlorella vulgaris for lipid production from industrial wastes and its use as biodiesel feedstock. New Biotechnology, 2011,28(4):362-368.
doi: 10.1016/j.nbt.2011.01.004
[18]   Cheirsilp B, Kitcha S, Torpee S . Co-culture of an oleaginous yeast rhodotorula glutinis and a microalga chlorella vulgaris for biomass and lipid production using pure and crude glycerol as a sole carbon source. Annals of Microbiology, 2012,62:987-993.
doi: 10.1007/s13213-011-0338-y
[19]   Shu C H, Tsai C C, Chen K Y , et al. Enhancing high quality oil accumulation and carbon dioxide fixation by a mixed culture of Chlorella sp. and Saccharomyces cerevisiae. Journal of the Taiwan Institute of Chemical Engineers, 2013,44(6):936-942.
doi: 10.1016/j.jtice.2013.04.001
[20]   Ling J, Nip S, Cheok W L , et al. Lipid production by a mixed culture of oleaginous yeast and microalga from distillery and domestic mixed wastewater. Bioresource Technology, 2014,173:132-139.
doi: 10.1016/j.biortech.2014.09.047
[21]   Yen H W, Chen P W, Chen L J . The synergistic effects for the co-cultivation of oleaginous yeast-Rhodotorula glutinis and microalgae-Scenedesmus obliquus on the biomass and total lipids accumulation. Bioresource Technology, 2015,184:148-152.
doi: 10.1016/j.biortech.2014.09.113
[22]   Peng Z, Yu X, Li J , et al. Enhancing lipid productivity by co-cultivation of Chlorella sp. U4341 and Monoraphidium sp. Fxy-10. Journal of Bioscience & Bioengineering, 2014,118(1):72-77.
[23]   赵飞燕, 余旭亚, 徐军伟 , 等. 共培养微藻Monoraphidium sp. FXY-10与Chlorella sp.U4341提高油脂产率与沉降率. 中国油脂, 2018,43(2):104-109.
[23]   Zhao F Y, Yu X Y, Xu W J , et al. Enhancement of lipid productivity and flocculation by co-cultivation of Chlorella sp. U4341 and Monoraphidium sp. FXY-10. China Oils and Fats, 2018,43(2):104-109.
[24]   De-Bashan L E, Antoun H, Bashan Y . Involvement of indole-3-acetic acid produced by the growth-promoting bacterium Azospirillum spp. in promoting growth of Chlorella vulgaris(1). Journal of Phycology, 2008,44(4):938-947.
doi: 10.1111/jpy.2008.44.issue-4
[25]   Do N M, Dublan M L , Ortiz-Marquez J C, et al. High lipid productivity of an Ankistrodesmus rhizobium artificial consortium. Bioresource Technology, 2013,146(10):400-407.
doi: 10.1016/j.biortech.2013.07.085 pmid: 23948276
[26]   Xin Z, Yan Z, Sheng H , et al. Characterization of microalgae-bacteria consortium cultured in landfill leachate for carbon fixation and lipid production. Bioresource Technology, 2014,156(2):322-328.
doi: 10.1016/j.biortech.2013.12.112
[27]   Higgins B T, Labavitch J M, Vandergheynst J S . Co-culturing Chlorella minutissima with Escherichia coli can increase neutral lipid production and improve biodiesel quality. Biotechnology & Bioengineering, 2015,112(9):1801-1809.
[28]   Wu Z, Zhu Y, Huang W , et al. Evaluation of flocculation induced by pH increase for harvesting microalgae and reuse of flocculated medium. Bioresource Technology, 2012,110(2):496-502.
doi: 10.1016/j.biortech.2012.01.101
[29]   Wang H, Anderson M A, Chen F , et al. Novel bacterial isolate from permian groundwater, capable of aggregating potential biofuel-producing microalga Nannochloropsis oceanica imet1. Applied & Environmental Microbiology, 2012,78(5):1445.
[30]   Agbakpe M, Ge S J, Zhang W , et al. Algae harvesting for biofuel production: influences of UV irradiation and polyethylenimine (pei) coating on bacterial biocoagulation. Bioresource Technology, 2014,166:266-272.
doi: 10.1016/j.biortech.2014.05.060
[31]   Wang Y, Yang Y, Ma F , et al. Optimization of Chlorella vulgaris and bioflocculant‐producing bacteria co-culture: enhancing microalgae harvesting and lipid content. Letters in Applied Microbiology, 2015,60(5):497-503.
doi: 10.1111/lam.2015.60.issue-5
[32]   Che R, Ding K, Huang L , et al. Enhancing biomass and oil accumulation of Monoraphidium sp. Fxy-10 by combined fulvic acid and two-step cultivation. Journal of the Taiwan Institute of Chemical Engineers, 2016,67:161-165.
doi: 10.1016/j.jtice.2016.06.035
[33]   Che R, Huang L, Xu J W , et al. Effect of fulvic acid induction on the physiology, metabolism, and lipid biosynthesis-related gene transcription of Monoraphidium sp. Fxy-10. Bioresource Technology, 2016,227:324-334.
[34]   杨凯, 史全良 . 不同浓度IAA对微藻TH6(Oedocladium sp.)生长及脂肪酸含量的影响. 植物资源与环境学报, 2009,18(2):80-83.
doi: 10.3969/j.issn.1674-7895.2009.02.014
[34]   Yang K, Shi Q L . Effects of different concentrations of IAA on growth and fatty acid content of microalgae TH6 (Oedocladium sp.). Journal of Plant Resources and Environment, 2009,18(2):80-83.
doi: 10.3969/j.issn.1674-7895.2009.02.014
[35]   郝宗娣, 刘平怀, 时杰 , 等. 不同植物激素对原始小球藻生长及油脂含量的影响. 广东农业科学, 2012,39(8):104-107.
doi: 10.3969/j.issn.1004-874X.2012.08.033
[35]   Hao Z D, Liu P H, Shi J , et al. Effects of phytohormone on growth and fatty acid composition of Chlorella protothecoides. Guangdong Agricultural Sciences, 2012,39(8):104-107.
doi: 10.3969/j.issn.1004-874X.2012.08.033
[36]   Liu J, Qiu W, Song Y . Stimulatory effect of auxins on the growth and lipid productivity of Chlorella pyrenoidosa and Scenedesmus quadricauda. Algal Research, 2016,18:273-280.
doi: 10.1016/j.algal.2016.06.027
[37]   刘飞, 王超, 王振瑶 , 等. 植物激素诱导对小球藻Chlorella vulgaris细胞生物量和油脂合成积累的影响. 中国生物制品学杂志, 2017,30(4):390-394.
[37]   Liu F, Wang C, Wang Z Y , et al. Effect of induction with phytohormones analogs on biomass and lipid accumulation in Chlorella vulgaris cells. Chinese Journal of Biologicals, 2017,30(4):390-394.
[38]   Yoshida K, Igarashi E, Wakatsuki E , et al. Mitigation of osmotic and salt stresses by abscisic acid through reduction of stress-derived oxidative damage in Chlamydomonas reinhardtii. Plant Science, 2004,167(6):1335-1341.
doi: 10.1016/j.plantsci.2004.07.002
[39]   Babu A G, Wu X, Kabra A N , et al. Cultivation of an indigenous Chlorella sorokiniana with phytohormones for biomass and lipid production under n-limitation. Algal Research, 2017,23:178-185.
doi: 10.1016/j.algal.2017.02.004
[40]   Salama E, Kabra A N, Ji M K , et al. Enhancement of microalgae growth and fatty acid content under the influence of phytohormones. Bioresource Technology, 2014,172:97-103.
doi: 10.1016/j.biortech.2014.09.002 pmid: 25247249
[41]   Yu X J, Sun J, Sun Y Q , et al. Metabolomics analysis of phytohormone gibberellin improving lipid and DHA accumulation in Aurantiochytrium sp. Biochemical Engineering Journal, 2016,112:258-268.
doi: 10.1016/j.bej.2016.05.002
[42]   Jusoh M, Loh S H, Chuah T S , et al. Elucidating the role of jasmonic acid in oil accumulation, fatty acid composition and gene expression in Chlorella vulgaris (Trebouxiophyceae) during early stationary growth phase. Algal Research, 2015,9:14-20.
doi: 10.1016/j.algal.2015.02.020
[43]   Dou X, Lu X H, Lu M Z , et al. The effects of trace elements on the lipid productivity and fatty acid composition of Nannochloropis oculata. Journal of Renewable Energy, 2013. Doi: 10.1155/2013/671545.
doi: 10.1155/2013/671545
[44]   Ren H Y, Liu B F, Kong F , et al. Enhanced lipid accumulation of green microalga Scenedesmus sp. by metal ions and edta addition. Bioresource Technology, 2014,169(5):763-767.
doi: 10.1016/j.biortech.2014.06.062 pmid: 25037828
[45]   Singh P, Guldhe A, Kumari S , et al. Combined metals and EDTA control: an integrated and scalable lipid enhancement strategy to alleviate biomass constraints in microalgae under nitrogen limited conditions. Energy Conversion & Management, 2016,114:100-109.
[46]   Gour G S, Prakash C G, Ruma P . Efficacy of EDTA and phosphorous on biomass yield and total lipid accumulation in two green microalgae with special emphasis on neutral lipid detection by flow cytometry. Advances in Biology, 2016,2016(3):1-12.
[47]   Gessler N N , Aver’Yanov A A, Belozerskaya T A. Reactive oxygen species in regulation of fungal development. Biochemistry Biokhimiia, 2007,72(10):1091-1109.
doi: 10.1134/S0006297907100070
[48]   Menon K R, Balan R, Suraishkumar G K . Stress induced lipid production in chlorella vulgaris: relationship with specific intracellular reactive species levels. Biotechnology & Bioengineering, 2013,110(6):1627-1636.
[49]   Li X, Hu H Y, Zhang Y P . Growth and lipid accumulation properties of a freshwater microalga Scenedesmus sp. under different cultivation temperature. Bioresource Technology, 2011,102(3):3098.
doi: 10.1016/j.biortech.2010.10.055
[50]   Chokshi K, Pancha I, Trivedi K , et al. Biofuel potential of the newly isolated microalgae Acutodesmus dimorphus under temperature induced oxidative stress conditions. Bioresource Technology, 2015,180:162-171.
doi: 10.1016/j.biortech.2014.12.102
[51]   Cho K, Lee C H, Ko K , et al. Use of phenol-induced oxidative stress acclimation to stimulate cell growth and biodiesel production by the oceanic microalga Dunaliella salina. Algal Research, 2016,17:61-66.
doi: 10.1016/j.algal.2016.04.023
[52]   Yilancioglu K, Cokol M, Pastirmaci I , et al. Oxidative stress is a mediator for increased lipid accumulation in a newly isolated Dunaliella salina strain. PLoS One, 2014,9(3):e91957.
doi: 10.1371/journal.pone.0091957
[53]   Petri B G, Watts R J, Teel A L , et al. Fundamentals of isco using hydrogen peroxide. New York: Springer New York, 2011.
[54]   Goodson C, Roth R, Wang Z T , et al. Structural correlates of cytoplasmic and chloroplast lipid body synthesis in Chlamydomonas reinhardtii and stimulation of lipid body production with acetate boost. Eukaryotic Cell, 2011,10(12):1592.
doi: 10.1128/EC.05242-11
[55]   Zalogin T R, Pick U . Azide improves triglyceride yield in microalgae. Algal Research, 2014,3:8-16.
doi: 10.1016/j.algal.2013.12.002
[56]   Zalogin T R, Pick U . Inhibition of nitrate reductase by azide in microalgae results in triglycerides accumulation. Algal Research, 2014,3:17-23.
doi: 10.1016/j.algal.2013.11.018
[57]   Sangwoo K, Hanul K, Donghwi K , et al. Rapid induction of lipid droplets in Chlamydomonas reinhardtii and Chlorella vulgaris by brefeldin A. PLoS One, 2013,8(12):e81978.
doi: 10.1371/journal.pone.0081978
[58]   Kato N, Dong T, Bailey M , et al. Triacylglycerol mobilization is suppressed by brefeldin a in Chlamydomonas reinhardtii. Plant & Cell Physiology, 2013,54(10):1585.
[59]   Liu B, Jin L, Sun P , et al. Sesamol enhances cell growth and the biosynthesis and accumulation of docosahexaenoic acid in the microalga Crypthecodinium cohnii. Journal of Agricultural & Food Chemistry, 2015,63(23):5640-5645.
[60]   Ren L J, Sun X M, Ji X J , et al. Enhancement of docosahexaenoic acid synthesis by manipulation of antioxidant capacity and prevention of oxidative damage in Schizochytrium sp. Bioresource Technology, 2016,223:141-148.
[61]   Gaffney M , O’Rourke R, Murphy R. Manipulation of fatty acid and antioxidant profiles of the microalgae Schizochytrium sp. through flaxseed oil supplementation. Algal Research, 2014,6:195-200.
doi: 10.1016/j.algal.2014.03.005
[62]   Singh D, Mathur A S, Tuli D K , et al. Propyl gallate and butylated hydroxytoluene influence the accumulation of saturated fatty acids, omega-3 fatty acid and carotenoids in Thraustochytrids. Journal of Functional Foods, 2015,15:186-192.
doi: 10.1016/j.jff.2015.03.022
[1] CAI Run-ze,WANG Zheng-bo,CHEN Yong-chang. Research Progress of Mecp2 Affecting Metabolic Function in Rett Syndrome[J]. China Biotechnology, 2021, 41(2/3): 89-97.
[2] LIU Tian-yi,FENG Hui,SALSABEEL Yousuf,XIE Ling-li,MIAO Xiang-yang. Research Progress of lncRNA in Animal Fat Deposition[J]. China Biotechnology, 2021, 41(11): 82-88.
[3] DUAN Hai-rong,WEI Sai-jin,LI Xun-hang. Advances in Rhamnolipid Biosynthesis by Pseudomonas aeruginosa Research[J]. China Biotechnology, 2020, 40(9): 43-51.
[4] Zhi-jin WEI,Xiao LI,Hao-nan WANG,Yong-hao YIN,Li-jun XI,Bao-sheng GE. Enhanced Biomass Production and Lipid Accumulation by Co-cultivation of Chlorella vulgaris with Azotobacter Mesorhizobium sp.[J]. China Biotechnology, 2019, 39(7): 56-64.
[5] Qi-zai WANG,Hong-chao WANG,Hai-qin CHEN,Jian-xin ZHAO,Hao ZHANG,Wei CHEN,Yong-quan CHEN. Effects of MTHFD1 Overexpression on Lipid Synthesis in the Oleaginous Fungus, Mortierella alpina[J]. China Biotechnology, 2018, 38(9): 12-18.
[6] Ming-ying LI,Ren-jun WANG,Fun ZHANG,Yan CHI. The Prokaryotic Expression and Activity Analysis of the Fifth Domain of β2GPⅠ and Its Mutants or Short Peptide Fragments[J]. China Biotechnology, 2018, 38(8): 1-9.
[7] YUAN Xiao-chuan, LIAN Fang, ZHAO Yin-nong, CHEN Chuang, HUANG Shan, LI Ke-zhi, ZENG Ai-ping, HE Jian-bo, WU Guo-bin. Elevated Temperature Induced Acceleration of Electrophoretic Tissue Clearing Process of Rat Liver Tissue[J]. China Biotechnology, 2017, 37(9): 65-70.
[8] ZHANG Ya-guang, ZHANG Chuan-bo, LU Wen-yu. Progress of Biosynthesis of Sophorolipids and Its Derivatives Production in Starmerella bombicola[J]. China Biotechnology, 2017, 37(9): 134-140.
[9] MENG Ying-ying, YAO Chang-hong, LIU Jiao, SHEN Pei-li, XUE Song, YANG Qing. Review and Evaluation of Microalgal Components Determination Methods[J]. China Biotechnology, 2017, 37(7): 133-143.
[10] XIA Qian-jun, WANG Fei, LI Xun. Review of Yarrowia lipolytica for SCO Production[J]. China Biotechnology, 2017, 37(3): 99-105.
[11] ZHANG Xue, TAO Lei, QIAO Sheng, DU Bing-hao, GUO Chang-hong. Roles of Glutathione S-transferase in Plant Tolerance to Abiotic Stresses[J]. China Biotechnology, 2017, 37(3): 92-98.
[12] WANG Ya nan, SHEN Hong wei, YANG Xiao bing, ZHAO Zong bao. Effects of Lipid Production by Rhodosporidium toruloides under Conditions with Limitation of Different Nutrient Elements[J]. China Biotechnology, 2016, 36(11): 16-22.
[13] WANG Hong chao, ZHANG Chen, CHEN Dian ning, QIAO Ju yuan, CHEN Hai qin, GU Zhen nan, ZHANG Hao, CHEN Wei, CHEN Yong quan. Cloning, Expression and Function Analysis of Methylenetetrahydrofolate Dehydrogenase from Mortierella alpina[J]. China Biotechnology, 2016, 36(11): 23-29.
[14] WANG Cai-xia, ZHANG Teng-jiang, TENG Jie, FENG Xu-dong, LI Chun. The Efficient Carbon-oxygen Transformation and Regulation of Desert Microalgaes[J]. China Biotechnology, 2016, 36(10): 45-52.
[15] MENG Ying-ying, WANG Hai-tao, CAO Xu-peng, XUE Song, YANG Qing, WANG Wei-liang. Rapid Detection of Neutral Lipids by HPLC-ELSD in Microalgae[J]. China Biotechnology, 2015, 35(11): 61-69.