Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2016, Vol. 36 Issue (8): 105-112    DOI: 10.13523/j.cb.20160814
    
Advances on Flavonoid Glycosides Production of Engineered Microorganisms
LI Xiao-bo, LIU Xue, ZHAO Guang-rong
Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University;Key Laboratory of Systems Bioengineering, Ministry of Education;SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
Download: HTML   PDF(1316KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Flavonoid glycosides are a large group of plant-based phenolic nature products. The glycosylation of flavonoids increases their solubility and stability relative to flavonoid aglycones, mainly catalyzed by glycosyltransferases (Gts).Uridine diphosphate glycosyltransferases play a key role in decorating flavonoids with different sugars, resulting in numerous structurally diverse flavonoid glycosides. With the rapid development of synthetic biology and metabolic engineering, engineered yeast, Escherichia coli and other microorganisms have been utilized to construct the biosynthesis pathways of sugar donors and flavonoid aglycones. The recent progress on glycosylated flavonoids in engineered microorganisms, as well as the clustering of glycosyltransferase, biosynthetic pathway of sugar donors were summarized, and its future trend was explored.



Key wordsMetabolic engineering      Engineered microorganisms      Synthetic biology      Flavonoid glycosides     
Received: 01 February 2016      Published: 16 March 2016
ZTFLH:  Q819  
Cite this article:

LI Xiao-bo, LIU Xue, ZHAO Guang-rong. Advances on Flavonoid Glycosides Production of Engineered Microorganisms. China Biotechnology, 2016, 36(8): 105-112.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20160814     OR     https://manu60.magtech.com.cn/biotech/Y2016/V36/I8/105

[1] Kim B G, Yang S M, Kim S Y, et al. Biosynthesis and production of glycosylated flavonoids in Escherichia coli:current state and perspectives. Applied Microbiology and Biotechnology, 2015, 99(7):2979-2988.
[2] 吴薛明, 许婷婷, 储建林.黄酮类化合物酶法糖基化修饰的研究进展.中国天然药物, 2010, 8(5):1432-1434. Wu X M, Xu T T, Chu J L.Progress on enzymatic glycosylation of flavonoids.Chinese Journal of Natural Medicines, 2010, 8(5):1432-1434.
[3] Veitch N C, Grayer R J. Flavonoids and their glycosides, including anthocyanins. Natural Product Reports, 2011, 28(10):1626-1695.
[4] Watanabe K. Effective use of heterologous hosts for characterization of biosynthetic enzymes allows production of natural products and promotes new natural product discovery. The Japanese Journal of Antibiotics, 2015, 68(1):55-67.
[5] 赵莹,刘津,王长松,等.微生物合成黄酮类研究进展.中国生物工程杂志, 2014, 34(4):110-117. Zhao Y, Liu J, Wang C S, et al. Advances on flavonoids production of engineered microorganisms.China Biotechnology, 2014, 34(4):110-117.
[6] Yonekura Sakakibara K, Hanada K. An evolutionary view of functional diversity in family 1 glycosyltransferases. The Plant Journal, 2011, 66(1):182-193.
[7] Thuan N H, Sohng J K. Recent biotechnological progress in enzymatic synthesis of glycosides. Journal of Industrial Microbiology & Biotechnology, 2013, 40(12):1329-1356.
[8] Paquette S M, Jensen K, Bak S. A web-based resource for the Arabidopsis P450, cytochromes b 5, NADPH-cytochrome P450 reductases, and family 1 glycosyltransferases. Phytochemistry, 2009, 70(17):1940-1947.
[9] Lairson L L, Henrissat B, Davies G J, et al. Glycosyltransferases:structures, functions, and mechanisms. Biochemistry, 2008, 77(1):521-555.
[10] Liang D M, Liu J H, Wu H, et al. Glycosyltransferases:mechanisms and applications in natural product development. Chemical Society Reviews, 2015, 44(22):8350-8374.
[11] Kobayashi S, Ishimaru M, Ding C K, et al. Comparison of UDP-glucose:flavonoid 3-O-glucosyltransferase (UFGT) gene sequences between white grapes (Vitis vinifera) and their sports with red skin. Plant Science, 2001, 160(3):543-550.
[12] Kim J H, Kim B G, Park Y,et al. Characterization of flavonoid 7-O-glucosyltransferase from Arabidopsis thaliana. Bioscience, Biotechnology, and Biochemistry, 2006, 70(6):1471-1477.
[13] He F, Chen W K, Yu K J, et al. Molecular and biochemical characterization of the UDP-glucose:Anthocyanin 5-O-glucosyltransferase from Vitis amurensis. Phytochemistry, 2015, 117:363-372.
[14] Brazier-Hicks M, Edwards R. Metabolic engineering of the flavone-C-glycoside pathway using polyprotein technology. Metabolic Engineering, 2013, 16:11-20.
[15] Ferreyra M L, Rodriguez E, Casas M I, et al. Identification of a bifunctional maize C-and O-glucosyltransferase. Journal of Biological Chemistry, 2013, 288(44):31678-31688.
[16] Pandey R P, Gurung R B, Parajuli P, et al. Assessing acceptor substrate promiscuity of YjiC-mediated glycosylation toward flavonoids. Carbohydrate Research, 2014, 393:26-31.
[17] Malla S, Pandey R P, Kim B G, et al. Regiospecific modifications of naringenin for astragalin production in Escherichia coli. Biotechnology and Bioengineering, 2013, 110(9):2525-2535.
[18] Werner S R, Morgan J A. Controlling selectivity and enhancing yield of flavonoid glycosides in recombinant yeast. Bioprocess and Biosystems Engineering, 2010, 33(7):863-871.
[19] Yan Y, Li Z, Koffas M A G. High-yield anthocyanin biosynthesis in engineered Escherichia coli. Biotechnology and Bioengineering, 2008, 100(1):126-140.
[20] Oka T, Jigami Y. Reconstruction of de novo pathway for synthesis of UDP-glucuronic acid and UDP-xylose from intrinsic UDP-glucose in Saccharomyces cerevisiae. Febs Journal, 2006, 273(12):2645-2657.
[21] Kim S Y, Lee H R, Park K, et al. Metabolic engineering of Escherichia coli for the biosynthesis of flavonoid-O-glucuronides and flavonoid-O-galactoside. Applied Microbiology and Biotechnology, 2015, 99(5):2233-2242.
[22] Diantini A, Subarnas A, Lestari K, et al. Kaempferol-3-O-rhamnoside isolated from the leaves of Schima wallichii Korth. inhibits MCF-7 breast cancer cell proliferation through activation of the caspase cascade pathway. Oncology Letters, 2012, 3(5):1069-1072.
[23] Woo Y M, Kim A J, Kim J Y, et al. Tyrosinase inhibitory compounds isolated from Persicaria tinctoria flower. Journal of Applied Biological Chemistry, 2011, 54(1):47-50.
[24] Kim B G, Kim H J, Ahn J H. Production of bioactive flavonol rhamnosides by expression of plant genes in Escherichia coli. Journal of Agricultural and Food Chemistry, 2012, 60(44):11143-11148.
[25] De Bruyn F, Van Brempt M, Maertens J, et al. Metabolic engineering of Escherichia coli into a versatile glycosylation platform:production of bio-active quercetin glycosides. Microbial Cell Factories, 2015, 14(1):1-12.
[26] Kim H J, Kim B G, Ahn J H. Regioselective synthesis of flavonoid bisglycosides using Escherichia coli harboring two glycosyltransferases. Applied Microbiology and Biotechnology, 2013, 97(12):5275-5282.
[27] Roepke J, Bozzo G G. Biocatalytic synthesis of quercetin 3-O-Glucoside-7-O-rhamnoside by metabolic engineering of Escherichia coli. ChemBioChem, 2013, 14(18):2418-2422.
[28] Han S H, Kim B G, Yoon J A, et al. Synthesis of flavonoid O-pentosides by Escherichia coli through engineering of nucleotide sugar pathways and glycosyltransferase. Applied and Environmental Microbiology, 2014, 80(9):2754-2762.
[29] Pandey R P, Malla S, Simkhada D, et al. Production of 3-O-xylosyl quercetin in Escherichia coli. Applied Microbiology and Biotechnology, 2013, 97(5):1889-1901.
[30] Ahn B C, Kim B G, Jeon Y M, et al. Formation of flavone di-O-glucosides using a glycosyltransferase from Bacillus cereus. Journal of Microbiology and Biotechnology, 2009, 19(4):387-390.
[31] Kim B G, Sung S H, Jung N R, et al. Biological synthesis of isorhamnetin 3-O-glucoside using engineered glucosyltransferase. Journal of Molecular Catalysis B:Enzymatic, 2010, 63(3):194-199.
[32] Thuan N H, Pandey R P, Thuy T T, et al. Improvement of regio-specific production of myricetin-3-O-α-L-rhamnoside in engineered Escherichia coli. Applied Biochemistry and Biotechnology, 2013, 171(8):1956-1967.
[33] Koirala N, Pandey R P, Van Thang D, et al. Glycosylation and subsequent malonylation of isoflavonoids in E. coli:strain development, production and insights into future metabolic perspectives. Journal of Industrial Microbiology & Biotechnology, 2014, 41(11):1647-1658.
[34] Yang S M, Han S H, Kim B G, et al. Production of kaempferol 3-O-rhamnoside from glucose using engineered Escherichia coli. Journal of Industrial Microbiology & Biotechnology, 2014, 41(8):1311-1318.
[35] Kim B G, Jung N R, Joe E J, et al. Bacterial synthesis of a flavonoid deoxyaminosugar conjugate in Escherichia coli expressing a glycosyltransferase of Arabidopsis thaliana. Chembiochem, 2010, 11(17):2389-2392.
[36] Kim B G, Sung S H, Ahn J H. Biological synthesis of quercetin 3-ON-acetylglucosamine conjugate using engineered Escherichia coli expressing UGT78D2. Applied Microbiology and Biotechnology, 2012, 93(6):2447-2453.
[37] Wu J, Du G, Chen J, et al. Enhancing flavonoid production by systematically tuning the central metabolic pathways based on a CRISPR interference system in Escherichia coli. Scientific Reports, 2015, 5:13477.
[38] De Paoli H C, Tuskan G A, Yang X. An innovative platform for quick and flexible joining of assorted DNA fragments. Scientific Reports, 2016, 6:19278.
[39] Zhou K, Qiao K, Edgar S, et al. Distributing a metabolic pathway among a microbial consortium enhances production of natural products. Nature Biotechnology, 2015,33(4):377-383.
[40] Song H, Ding M Z, Jia X Q, et al. Synthetic microbial consortia:from systematic analysis to construction and applications. Chemical Society Reviews, 2014, 43(20):6954-6981. 14(1):1-. [28]Kim H J, Kim B G, Ahn J H.Regioselective synthesis of flavonoid bisglycosides using Escherichia coli harboring two glycosyltransferases.Applied Microbiology and Biotechnology, 2013, 97(12):5275-5282. [29]Roepke J, Bozzo G G.Biocatalytic Synthesis of Quercetin 3-O-Glucoside-7-O-Rhamnoside by Metabolic Engineering of Escherichia coli.ChemBioChem, 2013, 14(18):2418-2422. [30]Han S H, Kim B G, Yoon J A, et al.Synthesis of Flavonoid O-Pentosides by Escherichia coli through Engineering of Nucleotide Sugar Pathways and Glycosyltransferase.Applied and Environmental Microbiology, 2014, 80(9):2754-2762. [31]Pandey R P, Malla S, Simkhada D, et al.Production of 3-O-xylosyl quercetin in Escherichia coli.Applied Microbiology and Biotechnology, 2013, 97(5):1889-1901. [32]Ahn B C, Kim B G, Jeon Y M, et al.Formation of flavone di-O-glucosides using a glycosyltransferase from Bacillus cereus.Journal of Microbiology and Biotechnology, 2009, 19(4):387-390. [33]Kim B G, Sung S H, Jung N R, et al.Biological synthesis of isorhamnetin 3-O-glucoside using engineered glucosyltransferase.Journal of Molecular Catalysis B: Enzymatic, 2010, 63(3):194-199. [34]Thuan N H, Pandey R P, Thuy T T T, et al.Improvement of regio-specific production of myricetin-3-O-α-L-rhamnoside in engineered Escherichia coli.Applied Biochemistry and Biotechnology, 2013, 171(8):1956-1967. [35]Koirala N, Pandey R P, Van Thang D, et al.Glycosylation and subsequent malonylation of isoflavonoids in E.coli: strain development, production and insights into future metabolic perspectives. Journal of Industrial Microbiology & Biotechnology, 2014, 41(11):1647-1658. [36]Yang S M, Han S H, Kim B G, et al.Production of kaempferol 3-O-rhamnoside from glucose using engineered Escherichia coli.Journal of Industrial Microbiology & Biotechnology, 2014, 41(8):1311-1318. [37]Kim B G, Jung N R, Joe E J, et al.Bacterial synthesis of a flavonoid deoxyaminosugar conjugate in Escherichia coli expressing a glycosyltransferase of Arabidopsis thaliana.Chembiochem, 2010, 11(17):2389-2392. [38]Kim B G, Sung S H, Ahn J H.Biological synthesis of quercetin 3-ON-acetylglucosamine conjugate using engineered Escherichia coli expressing UGT78D2.Applied Microbiology and Biotechnology, 2012, 93(6):2447-2453. [39]Wu J, Du G, Chen J, et al.Enhancing flavonoid production by systematically tuning the central metabolic pathways based on a CRISPR interference system in Escherichia coli.., 2015, 5:-. [40] De Paoli H C, Tuskan G A, Yang X.An innovative platform for quick and flexible joining of assorted DNA fragments. ., 2016, 6(19278):-. [41] Zhou K, Qiao K, Edgar S, et al.Distributing a metabolic pathway among a microbial consortium enhances production of natural products.., 2015., :-. [42]Song H, Ding M Z, Jia X Q, et al.Synthetic microbial consortia: from systematic analysis to construction and applications.Chemical Society Reviews, 2014, 43(20):6954-6981.

[1] MA Ning,WANG Han-jie. Advances of Optogenetics in the Regulation of Bacterial Production[J]. China Biotechnology, 2021, 41(9): 101-109.
[2] HUANG Huan-bang,WU Yang,YANG You-hui,WANG Zhao-guan,QI Hao. Progress in Incorporation of Non-canonical Amino Acid Based on Archaeal Tyrosyl-tRNA Synthetase[J]. China Biotechnology, 2021, 41(9): 110-125.
[3] GUO Man-man,TIAN Kai-ren,QIAO Jian-jun,LI Yan-ni. Application of Phage Recombinase Systems in Synthetic Biology[J]. China Biotechnology, 2021, 41(8): 90-102.
[4] MIAO Yi-nan,LI Jing-zhi,WANG Shuai,LI Chun,WANG Ying. Research Progress of Key Enzymes in Terpene Biosynthesis[J]. China Biotechnology, 2021, 41(6): 60-70.
[5] DONG Shu-xin,QIN Lei,LI Chun,LI Jun. Transcription Factor Engineering Harnesses Metabolic Networks to Meet Efficient Production in Cell Factories[J]. China Biotechnology, 2021, 41(4): 55-63.
[6] ZHENG Yi,GUO Shi-ying,SUI Feng-xiang,YANG Qi-yu,WEI Ya-xuan,LI Xiao-yan. Applications of Quorum Sensing Systems in Synthetic Biology[J]. China Biotechnology, 2021, 41(11): 100-109.
[7] LI Yuan-yuan,LI Yan,CAO Ying-xiu,SONG Hao. Research and Strategies of Flavins-mediated Extracellular Electron Transfer[J]. China Biotechnology, 2021, 41(10): 89-99.
[8] CHA Ya-ping, ZHU Mu-zi, LI Shuang. Research Progress on In Vivo Continuous Directed Evolution[J]. China Biotechnology, 2021, 41(1): 42-51.
[9] GUO Er-peng, ZHANG Jian-zhi, SI Tong. Recent Advances in the High-throughput Engineering of Lanthipeptides[J]. China Biotechnology, 2021, 41(1): 30-41.
[10] CHANG Lu, HUANG Jiao-fang, DONG Hao, ZHOU Bin-hui, ZHU Xiao-juan, ZHUANG Ying-ping. A Review on Bioremediation and Detection of Heavy Metal Pollution by Synthetic Biological Engineered Microorganisms and Biofilms[J]. China Biotechnology, 2021, 41(1): 62-71.
[11] RAO Hai-mi,LIANG Dong-mei,LI Wei-guo,QIAO Jian-jun,CAI YIN Qing-ge-le. Advances in Synthetic Biology of Fungal Aromatic Polyketides[J]. China Biotechnology, 2020, 40(9): 52-61.
[12] YAN Wei-huan,HUANG Tong,HONG Jie-fang,MA Yuan-yuan. Recent Advances in Butanol Biosynthesis of Escherichia coli[J]. China Biotechnology, 2020, 40(9): 69-76.
[13] ZHANG Yu-ting,LI Wei-guo,LIANG Dong-mei,QIAO Jian-jun,CAI YIN Qing-ge-le. Research Progress in Synthetic Biology of P450s in Terpenoid Synthesis[J]. China Biotechnology, 2020, 40(8): 84-96.
[14] WANG Zhen,LI Xia,YUAN Ying-jin. Advances in Production of Caffeic Acid and Its Ester Derivatives in Heterologous Microbes[J]. China Biotechnology, 2020, 40(7): 91-99.
[15] XUE Yan-ting,WU Sheng-bo,XU Cheng-yang,YUAN Bo-xin,YANG Shu-juan,LIU Jia-heng,QIAO Jian-jun,ZHU Hong-ji. Research Progress on the Quorum Sensing in the Dynamic Metabolic Regulation[J]. China Biotechnology, 2020, 40(6): 74-83.