Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2018, Vol. 38 Issue (2): 102-108    DOI: 10.13523/j.cb.20180215
Orginal Article     
Production of Cyclic Adenosine Monophosphate (cAMP) by Microbial Fermentation——A Review
Li-na CHENG1,2,Hai-yan LU1,2,Shu-ling QU3,Yi-qun ZHANG3,Juan-juan DING1,2,Shao-lan ZOU1,2*()
1 School of Chemical Engineering and Technology,Tianjin University,Tianjin 300350,China
2 Key Laboratory of Systems Bioengineering,Ministry of Education,Tianjin 300350,China
3 PetroChina Dagang Oilfield In Tuanbowa Development Company, Tianjin 301607, China
Download: HTML   PDF(702KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

3’,5’-cyclic adenosine monophosphate (cAMP), an important and active compound due to its participation in various physiological actions, acts as a key second messenger. It was first reported in 1957. Since then a lot of research had been carried on for its numerous functions. Exogenous cAMP was developed as pharmaceuticals early in 1970s and it has also been proved to have a great potential in animal husbandry. Now the known cAMP API (Active Pharmaceutical Ingredient) was all produced by chemical synthesis. On the other hand, the species used by microbial cAMP fermentation research includes Arthrobacter, Bacillus subtilis and yeast. As a result of utilizing metabolic regulation mechanism and technology, the extracellular cAMP level could reach ≥7.23 g/L for Arthrobacter and 6~7 g/L for Bacillus subtilis. High levels of extracellular cAMP production by Saccharomyces cerevisiae were reported in recent years. In order to make full use of microbial fermentation and realize its industrial production, it needs to further improve the performance of fermenting microorganisms and the fermentation technology, solve the scale-up problem and make the process more economic.



Key wordscAMP      Chemical synthesis      Microbial fermentation      Metabolic engineering     
Received: 28 September 2017      Published: 21 March 2018
ZTFLH:  Q819  
Cite this article:

Li-na CHENG,Hai-yan LU,Shu-ling QU,Yi-qun ZHANG,Juan-juan DING,Shao-lan ZOU. Production of Cyclic Adenosine Monophosphate (cAMP) by Microbial Fermentation——A Review. China Biotechnology, 2018, 38(2): 102-108.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20180215     OR     https://manu60.magtech.com.cn/biotech/Y2018/V38/I2/102

Fig.1 Purine metabolism and cAMP synthesis pathway in Saccharomyces cerevisiae
[1]   Suthgerl E W, Rall T W . The properties of an adenine ribonucleotide produced with cellular particles, ATP, Mg and epinephrine or glucagon. The Journal of the American Chemical Society, 1957,79(13):3608.
[2]   Haynes R C, Sutherland E W, Rall T W . The role of cyclic adenylic acid in hormone action. Recent Progress in Hormone Research, 1960,16(16):121-138.
[3]   Sutherland E W, Robison G A, Butcher R W . Some aspects of the biological role of adenosine 3’, 5’-monophosphate (cyclic AMP). Circulation, 1968,37(2):279-306.
[4]   Juana M Gancedo . Biological roles of cAMP: variations on a theme in the different kingdoms of life. Blological Reviews, 2013,88(3):645-668.
[5]   Amer M S, Mckinney G R . Cyclic nucleotides as mediators of drug action. Annual Reports in Medicinal Chemistry, 1975,10:192-201.
[6]   Murad F . Clinical studies and applications of cyclic nucleotides. Advances in Cyclic Nucleotide & Protein Phosphorylation Research, 1983,3:355-385.
[7]   党立, 王希敏, 韩利文 , 等. 环磷酸腺苷的临床应用进展. 山东科学, 2007,20(3):61-64.
[7]   Dang L, Wang X M, Han L W , et al. Progresses on the clinical application of cAMP Shandong Science, 2007,20(3):61-64.
[8]   胡晨旭, 张晶蓉, 黄丽华 , 等. 环磷酸腺苷在肿瘤临床治疗中的应用研究进展. 天津药学, 2013,25(6):49-52.
[8]   Hu C X, Zhang J R, Huang L H , et al. The research progress on the clinical treatment of tumor using cyclic adenosine monophosphate (cAMP) Tianjin Pharmacy, 2013,25(6):49-52.
[9]   赵升皓 . 心先安作用的分子基础. 徐州医学院学报, 1984,4(4):3-18.
[9]   Zhao S H . The molecluar basis behind the function of Xinxian’an Xuzhou Medical School Journal, 1984,4(4):3-18.
[10]   徐州医学院附属医院内科心血管组. 心先安临床应用总结. 徐州医学院学报, 1984,4(4):43-47.
[10]   Cardiovascular Medicine group in Xuzhou Medical School Hospital. Clinical application summary of Xinxian’an Xuzhou Medical School Journal, 1984,4(4):43-47.
[11]   陈邦云, 吕继蓉, 张克英 , 等. 外源环腺苷酸(cAMP)对营养物质代谢的影响. 饲料工业, 2003,24(08):21-26.
[11]   Chen B Y, Lv J R, Zhang KY , et al. The effect of exogenous cAMP on nutrient metabolism Feed Industry, 2003,24(8):21-26.
[12]   张光磊, 欧阳富龙, 王勤华 , 等. 二丁酰环腺苷酸的作用及其在猪生产中的应用. 猪业科学, 2016,33(3):118-120.
[12]   Zhang G L, Ouyang F L, Wang Q H , et al. The function of dbcAMP and its application in pig production Swine Industry Science, 2016,33(3):118-120.
[13]   刘孟军, 王永惠 . 枣和酸枣等41种园艺植物 cAMP含量的研究. 河北农业大学学报, 1991,14(4):20-23.
[13]   Liu M J , Wang Y H. cAMP contents of Zizyphus jujube Mill. Zizyphus spinosus Hu. and other twelve horticural plants Journal of Hebei Agricultural University, 1991,14(4):20-23.
[14]   毕珣, 刘庆春, 金峰 , 等. 枣环磷酸腺苷提取液高原应激条件下抗疲劳作用实验研究. 中国食物与营养, 2015,21(3):81-84.
[14]   Bi X, Liu Q C, Jin F , et al. Experimental study on the anti-fatigue role of Jujube extract cyclic adenosine monophosphate under plateau stress Food and Nutrition in China, 2015,21(3):81-84.
[15]   张今 . 3’,5’-环化腺苷酸合成的改进. 医药工业, 1979,10(4):7-10.
[15]   Zhang J . The improvement of 3’,5’- cyclic nucleotide synthesis Pharmaceutical Industry, 1979,10(4):7-10.
[16]   韩文炎, 屠宛蓉 . 环腺苷-3’,5’-磷酸 (cAMP)合成方法的改进及反应机理初探. 河北大学学报(自然科学版), 1986,6(1):54-60.
[16]   HanW Y, Tu W R . The improvement of 3’,5’- cAMP synthesis method and its preliminary reaction mechanism study Journal of Hebei University, 1986,6(1):54-60.
[17]   Roberto Gelsomino, Marc Vancanneyt, Jean Swings . Reclassification of Brevibacterium liquefaciens Okabayashi and Masuo 1960 as Arthrobacter nicotianae Giovannozzi-Sermanni 1959. International Journal of Systematic and Evolutionary Microbiology, 2004,54(2):615-616.
[18]   Ishiyama J, Yokotsuka T, Saito N . Cyclic AMP production by Corynebacterium murisepticum no. 7 (ATCC21374) and Microbacterium sp.no. 205 (ATCC21376). Agricultural and Biological Chemistry, 1974,38(3):507-514.
[19]   Ishiyama J . Isolation of mutants with improved production of cAMP from Microbacterium sp. no. 205 (ATCC21376). Applied Microbiology Biotechnology, 1990,34(3):359-363.
[20]   杨秀琴, 阚振荣 . 简单节杆菌 (Arthrobacter Simplex 1.754) 产3’,5’-cAMP的初步研究. 河北大学学报(自然科学版), 1983,3(1):97-100.
[20]   Yang X Q, Kan Z R . The preliminary study on 3’,5’-cAMP production by Arthrobacter Simplex 1.754 Journal of Hebei University, 1983,3(1):97-100.
[21]   徐晓静, 余筱敏, 李俊惺 , 等. 添加次黄嘌呤对环磷酸腺苷发酵产苷的影响. 河南科技学院学报(自然科学版), 2016,44(03):22-25.
[21]   Xu X J, Yu X M, Li J X . et al. Effect of hypoxanthine addition content and mode on cyclic adenosine monophosphate production Journal of Henan Institute of Science and Technology (Natural Science Edition). 2016,44(3):22-25.
[22]   李俊惺, 徐晓静, 李会军 , 等. 不同基质酵母浸膏对cAMP合成菌生长的影响. 河南科技学院学报(自然科学版), 2016,44(6):9-12.
[22]   Li J X, Xu X J, Li H J , et al. Effect of yeast extract with different substrates on the growth of cAMP synthesis bacteria Journal of Henan Institute of Science and Technology (Natural Science Edition). 2016,44(6):9-12.
[23]   He Song, Xiaochun Chen, Jiaming Cao , et al. Directed breeding of an Arthrobacter mutant for high-yield production of cyclic adenosine monophophate by N + ion implantation . Radiation Physics and Chemistry, 2010,79(8):826-830.
[24]   童鹏, 李楠, 牛欢青 , 等. 大片段两步同源重组敲除节杆菌肌酐酸脱氢酶基因质粒的构建. 生物加工过程, 2016,14(1):14-18,35.
[24]   Tong P, Li N, Niu H Q , et al. Construction of the plasmid to knockout the inosine 5’-monophosphate dehydrogenase gene by the large fragment of two-step homologous recombination in Arthrobacter sp Journal of Bioprocess Engineering, 2016,14(1):14-18,35.
[25]   谢婧婧, 丁静静, 应汉杰 , 等. 一株过表达次黄嘌呤磷酸核糖转移酶基因的节杆菌及其构建方法与应用. 中国: 201310248615.1; CN103320373B. 2013. 06. 20.
[25]   Xie J J, Ding J J, Ying H J , et al. A Arthrobacter strain to overexpress hgprt gene, the method constructed and its application. China patent: 201310248615.1; CN103320373B. 2013. 06. 20.
[26]   Chen X C, Song H, Fang T , et al. Enhanced cyclic adenosine monophosphate production by Arthrobacter A302 through rational redistribution of metabolic flux. Bioresource Technology, 2010,101(9):3159-3163.
[27]   要世伟, 牛欢青, 陈勇 , 等. 硫胺素对Arthrobacter sp.A302环磷酸腺苷发酵的影响. 生物加工过程, 2013,11(6):19-23.
[27]   Yao S W, Niu H Q, Chen Y , et al. Effects of thiamin on production of cyclic adenosine monophosphate by Arthrobacter sp. A302 Journal of Bioprocess Engineering, 2013,11(6):19-23.
[28]   Lei Li, Xiaochun Chen, Jian Cheng , et al. Bi-stage control of dissolved oxygen to enhance cyclic adenosine monophosphate production by Arthrobacter A302, Bioprocess and Biosystems Engineering, 2012,35(8):1281-1286.
[29]   牛欢青 . 节杆菌中环磷酸腺苷合成途径的机理解析及调控. 南京:南京工业大学, 2014.
[29]   Niu H Q . Mechanism analysis and regulation of synthetic pathway of cyclic adenosine monophosphate in Arthrobacter strain Nanjing: Nanjing University of Technology, 2014.
[30]   Niu H Q, Chen Y, Yao S W , et al. Metabolic flux analysis of Arthrobacter sp CGMCC3584 for cAMP production based on C-13 tracer experiments and gas chromatography-mass spectrometry, Journal of Biotechnology, 2013,168(4):355-361.
[31]   Qian W B, Lin X Q, Zhu X Q , et al. Studies of equilibrium, kinetics simulation and thermodynamics of cAMP adsorption onto an anion-exchange resin, Chemical Engineering Journal, 2010,165(3):907-915.
[32]   Qian W B, Wu J L, Yang L , et al. Computational simulations of breakthrough curves in cAMP adsorption processes in ion-exchange bed under hydrodynamic flow. Chemical Engineering Journal, 2012,197(14):424-434.
[33]   朱晓宏, 朱晓慧, 魏薇 . 磷酸二酯酶抑制剂对枯草芽孢杆菌发酵环磷腺苷的影响. 食品与生物技术学报, 2014,33(8):837-840.
[33]   Zhu X H, Zhu X H, Wei W . Effect of phosphodiesterase inhibitors on adenosine-3’,5’-cyclic monophosphate production by fermentation with Bacillus subtilis Journal of Food Science and Biotechnology, 2014,33(8):837-840.
[34]   朱晓宏, 朱晓慧, 魏薇 . 利用枯草芽孢杆菌发酵生产环磷腺苷的工业化试验. 食品与生物技术学报, 2014,33(11):1228-1231.
[34]   Zhu X H, Zhu X H, Wei W . Process of adenosine-3’,5’-cyclic monophosphate production by fermentation with Bacillus subtilis Journal of Food Science and Biotechnology, 2014,33(11):1228-1231.
[35]   Jurgen Vandamme, Dries Castermans, Johan M Thevelein . Molecular mechanisms of feedback inhibition of protein kinase A on intracellular cAMP accumulation. Cellular Signalling, 2012,24(8):1610-1618.
[36]   Engelberg D, Perlman R, Levitzki A . Transmembrane signaling in Saccharomyces cerevisiae as a model for signaling in metazoans: state of the art after 25 years. Cellular Signalling, 2014,26(12):2865-2878.
[37]   Marie F, Guillaume D, Francisco T Q , et al. Systematic identification of signal integration by protein kinase A. Proceedings of the National Academy of Sciences of the United States of America, 2015,112(14):4501-4506.
[38]   Sergio P L, Santiago S M, Claudia M A , et al. Complex regulation of Hsf1-Skn7 activities by the catalytic subunits of PKA in Saccharomyces cerevisiae: experimental and computational evidences. BMC Systems Biology, 2015,9(1):42.
[39]   高文萱 . 高产cAMP酿酒酵母菌株的构建. 天津:天津大学, 2012.
[39]   Gao W X . Construction of Saccharomyces cerevisiae strains with high cAMP productivity Tianjin: Tianjin University, 2012.
[40]   徐欢欢, 程丽娜, 王凯 , 等. 利用转录调控因子Bas1p和Bas2p协同作用提高酿酒酵母cAMP产量的研究. 微生物学通报, 2016,43(2):370-378.
[40]   Xu H H, Cheng L N, Wang K , et al. Reinforced cooperative interaction between Bas1p and Bas2p improves cAMP production by Saccharomyces cerevisiae, Microbiol China, 2016,43(2):370-378.
[41]   姬晓兵, 王凯, 陈洵 . 过表达嘌呤合成途径关键酶基因对重组酿酒酵母菌株生产cAMP的影响. 过程工程学报, 2014,14(5):853-859.
[41]   Ji X B, Wang K, Chen X . Effects of overexpression of key enzyme genes involved in the purine synthesis pathway on cAMP production with recombinant Saccharomyces cerevisiae strain The Chinese Journal of Process Engineering, 2014,14(5):853-859.
[42]   王凯, 姬晓兵, 徐欢欢 , 等. 整合过表达嘌呤代谢途径关键酶基因提高酿酒酵母菌株环磷酸腺苷产量. 食品与发酵工业, 2016,42(8):25-30.
[42]   Wang K, Ji X B, Xu H H , et al. Over-expressing key enzyme genes in the purine synthesis pathway by integrating into genome improves cyclic adenosine monophosphate production by Saccharomyces cerevisiae Food and Fermentation Industries, 2016,42(8):25-30.
[43]   Matange N . Revisiting bacterial cyclic nucleotide phosphodiesterases: cyclic AMP hydrolysis and beyond. FEMS Microbiology Letters, 2015,362(22):183.
[1] MA Ning,WANG Han-jie. Advances of Optogenetics in the Regulation of Bacterial Production[J]. China Biotechnology, 2021, 41(9): 101-109.
[2] MIAO Yi-nan,LI Jing-zhi,WANG Shuai,LI Chun,WANG Ying. Research Progress of Key Enzymes in Terpene Biosynthesis[J]. China Biotechnology, 2021, 41(6): 60-70.
[3] LI Yuan-yuan,LI Yan,CAO Ying-xiu,SONG Hao. Research and Strategies of Flavins-mediated Extracellular Electron Transfer[J]. China Biotechnology, 2021, 41(10): 89-99.
[4] YAN Wei-huan,HUANG Tong,HONG Jie-fang,MA Yuan-yuan. Recent Advances in Butanol Biosynthesis of Escherichia coli[J]. China Biotechnology, 2020, 40(9): 69-76.
[5] XUE Yan-ting,WU Sheng-bo,XU Cheng-yang,YUAN Bo-xin,YANG Shu-juan,LIU Jia-heng,QIAO Jian-jun,ZHU Hong-ji. Research Progress on the Quorum Sensing in the Dynamic Metabolic Regulation[J]. China Biotechnology, 2020, 40(6): 74-83.
[6] GUO Sheng-nan, LI Xin-xiao, WANG Feng, LIU Kun-mei, DING Na, HU Qi-kuan, SUN Tao. Establishment and Identification of the Neocortex and Hippocampus GABRG2 Knockout Mice and Its Preliminary Study in Generalized Epilepsy with Febrile Seizures Plus[J]. China Biotechnology, 2020, 40(3): 9-20.
[7] LIU Jin-cong,LIU Xue,YU Hong-jian,ZHAO Guang-rong. Recent Advances in Microbial Production of Phloretin and Its Glycosides[J]. China Biotechnology, 2020, 40(10): 76-84.
[8] Bao-hui WANG,Nuo XU,Dan YANG,Xiao-kun LI. Research Progress of FGF14 in Neurodegenerative Diseases[J]. China Biotechnology, 2019, 39(1): 77-81.
[9] Si-li YU,Xue LIU,Zhao-yu ZHANG,Hong-jian YU,Guang-rong ZHAO. Advances of Betalains Biosynthesis and Metabolic Regulation[J]. China Biotechnology, 2018, 38(8): 84-91.
[10] ZHAO Xiu-li, ZHOU Dan-dan, YAN Xiao-guang, WU Hao, CAIYIN Qing-gele, LI Yan-ni, QIAO Jian-jun. Regulation and Application in Metabolic Engineering of Bacterial Small RNAs[J]. China Biotechnology, 2017, 37(6): 97-106.
[11] GAO Jiao-jiao, YANG Shu-lin. Advances in the Production of High Molecular Weight Hyaluronic Acid by Microbial Fermentation[J]. China Biotechnology, 2017, 37(5): 118-125.
[12] YU Xiao-chun, MA Shi-liang. Advances in Research of Aspergillus oryzae as a Host of Heterologous Protein Expression[J]. China Biotechnology, 2016, 36(9): 94-100.
[13] LI Xiao-bo, LIU Xue, ZHAO Guang-rong. Advances on Flavonoid Glycosides Production of Engineered Microorganisms[J]. China Biotechnology, 2016, 36(8): 105-112.
[14] GAO Cui-juan, LIN Carol Sze-ki, QI Qing-sheng. Production of Medium-chain-length Polyhydroxyalkanoates by Recombinant Yarrowia lipolytica Through Metabolic Engineering[J]. China Biotechnology, 2016, 36(5): 53-58.
[15] XU Li, XIONG Wei, YANG Jiang-Ke. Four Types of Promoter Controlled Campylobacter jejuni Single Hemoglobin Improved the Growth of Escherichia coli[J]. China Biotechnology, 2016, 36(2): 43-50.