Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2011, Vol. 31 Issue (7): 121-125    DOI:
    
Current Progress on the Signal Transduction Pathway of Innate Immunity in Caenorhabditis Elegans
WANG Tao1,2, DU Li1, MA Qiong1, CUI Yu-fang1
1. Beijing Institute of Radiation Medicine, Academy of Military Medical Sciences, Beijing 100850, China;
2. State Key Laboratory of Millimeter Wave, Southeast University, Nanjing 210096, China
Download: HTML   PDF(361KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Caenorhabditis elegans(C. elegans) has been widely used as a model organism in the research of nervous system, aging mechanisms and programmed cell death, owing to its advantages of simple tissue structure, easily culture, short lifecycle. Different from higher organisms, C. elegans is lack of adaptive immune, only the innate immune plays an important role in anti-bacteria, anti-oxidative stress and so on. Four immune-related signal transduction pathway in C. elegans, including insulin-receptor-like pathway, transforming growth factor β(TGF-β) pathway, mitogen activated protein kinases(MAPK) pathway and programmed cell death(PCD) pathway play major roles in various conditions of environment. Meanwhile, the innate immune system of C. elegans is conservative in many respects, which provides new idea for research of immune mechanism in higher organisms. Accordingly.The progress on innate immune signal transduction pathway in C. elegans is reviewed, expecting to provide some reference for investigating innate immune related to higher organisms including mankinds.



Key wordsCaenorhabditis elegans      Innate immunity      Stress      Signal transduction pathway     
Received: 04 March 2011      Published: 25 July 2011
ZTFLH:  Q74  
Cite this article:

WANG Tao, DU Li, MA Qiong, CUI Yu-fang. Current Progress on the Signal Transduction Pathway of Innate Immunity in Caenorhabditis Elegans. China Biotechnology, 2011, 31(7): 121-125.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2011/V31/I7/121


[1] Brenner S. The genetics of Caenorhabditis elegans. Genetics, 1974, 77(1):71-94.

[2] Couillauct C, Ewbank J J. Diverse bacteria are pathogens of C. elegans. Infect Immun, 2002, 70(8):4705-4707.

[3] Ewbank J J. Tackling both sides of the host-pathogen equation with Caenorhabditis elegans. Microbes Infect, 2002, 4(2):247-256.

[4] Kwon E S, Narasimhan S D, Yen K, et al. A new DAF-16 isoform regulates longevity. Nature, 2010, 466(7035):498-502.

[5] Kenyon C. The first long-lived mutants: discovery of the insulin/IGF-1 pathway for ageing. Phil Trans R Soc B, 2011, 366(1561):9-16.

[6] Evans E A, Chen W C, Tan M W. The DAF-2 insulin-like signaling pathway independently regulates aging and immunity in Caenorhabditis elegans. Aging Cell, 2008, 7(6):879-893.

[7] Williams T W, Dumas K J, Hu P J. EAK proteins: novel conserved regulation of Caenorhabditis elegans lifespan. Aging, 2010, 1(10):742-747.

[8] Jensen V L, Simonsen K T, Lee Y H, et al. RNAi screen of DAF-16/FOXO target genes in Caenorhabditis elegans links pathogenesis and dauer formation. PLOS ONE, 2010, 5(12):1-8.

[9] Murphy C T, McCarroll S A, Bargmann C I, et al. Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature, 2003, 424(6946):277-283.

[10] Shivers R P,Youngman M J, Kim D H. Transcriptional responses to pathogens in Caenorhabditis elegans. Curr Opin Microbiol, 2008, 11(3):251-256.

[11] Yoko H, Masashi T, Shuji H. Redox regulation,gene expression and longevity. Geriatr Gerontol Int, 2010, 10(1):59-69.

[12] Chavez V, Mohri-Shiomi A, Maadani A, et al. Oxidative stress enzymes are required for DAF-16 mediated immunity due to generation of reactive oxygen species by Caenorhabditis elegans. Genetics, 2007, 176(3):1567-1577.

[13] Zugasti O, Eubank J J. Neuroimmune regulation of antimicrobial peptide xpression by a noncanonical TGF-βsignaling pathway in Caenorhabditis elegans epidermis. Nat Immunol, 2009, 10(3):249-256.

[14] Mallo G V, Kurz C L, Couillault C. Inducible antibacterial defense system in C. elegans. Curr Biol, 2002, 12(14):1209-1214.

[15] Roberts A F, Gumienny T L, Gleason R J. Regulation of genes affecting body size and innate immunity by the DBL-1/BMP-like pathway in Caenorhabditis elegans. BMC Dev Biol, 2010, 10(61):1-10.

[16] Kurz C L, Tan M W. Regulation of aging and innate immunity in Caenorhabditis elegans. Aging Cell, 2004, 3(4):185-193.

[17] Bolz D D,Tenor J L, Aballay A. A conserved PMK-1/P38 MAPK is required in Ceanorhabditis elegans tissue-specific immune response. J Biol Chem, 2010, 285(14):10832-10840.

[18] Mizuno T, Hisamoto N, Terada T, et al. The Caenorhabditis elegans MAPK phosphatase VHP-1 mediates a novel JNK-like signaling pathway in stress response. EMBO, 2004, 23(11):2226-2234.

[19] Nicholas H R, Hodgkin J. The ERK MAPK kinase cascade mediates tail swelling and a protective response to rectal infection in Caenorhabditis elegans. Curr Biol, 2004, 14(14):1256-1261.

[20] Kim D H, Liberati N T, Mizuno T, et al. Integration of Caenorhabditis elegans MAPK pathways mediating immunity and stress resistance by MEK-1 MAPK kinase and VHP-1 MAPK phosphatase. Proc Natl Acad Sci USA, 2004, 101(30):10990-10994.

[21] Gravato-Nobre M J, Hodgkin J. Caenorhabditis elegans as a model for innate immunity to pathogens. Cell Microbiol, 2005, 7(6):741-751.

[22] Putcha G V,Johnson E M. 'Men are but worms:’ neuronal cell death in C. elegnas and vertebrates. Cell Death Differ, 2004, 11(1):38-48.

[23] 王凯.生命科学研究中常用模式生物.生命科学研究, 2010,14(2):156-165. Wang K. Life Science Research, 2010, 14(2):156-165.

[24] Nehme R, Conradt B. Egl-1: a key activator of apoptotic cell death in C. elegans. Oncogene, 2008, 27(1):30-40.

[25] Aballay A, Ausubel F M. Programmed cell death mediated by ced-3 and ced-4 protects Caenorhabditis elegans from Salmonella typhimurium-mediated killing. Proc Natl Acad Sci USA, 2001, 98(5):2735-2739.

[26] Tenor J L, Aballay A. A conserved Toll-like receptor is required for Caenorhabditis elegans innate immunity. Scientific Report, 2008, 9(1):103-109.

[27] Liberati N T, Fitzgeraldet K A, Kim D H, et al. Requirement for a conserved Toll/interleukin-1 resistance domain protein in the C.elegans immune response. Proc Natl Acad Sci USA, 2004, 101(17):6593-6598.

[28] Couillault C, Pujol N, Reboul J, et al. TLR-independent control of innate immunity in Caenorhabditis elegans by the TIR domain adaptor protein TIR-1,an ortholog of human SARM. Nat Immunol, 2004, 5(5):488-494.

[29] 杨再昌,杨小生. 秀丽隐杆线虫(Caenorhabditis elegans)在药物筛选中的应用.生命科学, 2009, 21(4):593-598. Yang Z C, Yang X S. Chinese Bulletion of Life Sciences, 2009, 21(4):593-598.

[1] QIAO Sheng-tai,WANG Man-qi,XU Hui-ni. Functional Analysis of Prokaryotic Expression Protein of Tomato SlTpx in Vitro[J]. China Biotechnology, 2021, 41(8): 25-32.
[2] DONG Shu-xin,QIN Lei,LI Chun,LI Jun. Transcription Factor Engineering Harnesses Metabolic Networks to Meet Efficient Production in Cell Factories[J]. China Biotechnology, 2021, 41(4): 55-63.
[3] XUE Zhi-yong,DAI Hong-sheng,ZHANG Xian-yuan,SUN Yan-ying,HUANG Zhi-wei. Effects of Vitreoscilla Hemoglobin Gene on Growth and Intracellular Oxidation State of Saccharomyces cerevisiae[J]. China Biotechnology, 2021, 41(11): 32-39.
[4] HAO Xiao-ting,LIU Jun-jie,DENG Yu-lin,ZHANG Yong-qian. Radiation Biosensor Based on Promoter of SOS Reaction and Oxidative Stress Reaction[J]. China Biotechnology, 2020, 40(7): 30-40.
[5] GAO Xiao-peng,HE Meng-chao,XU Ke,LI Chun. Research Progress on pH Regulation in the Process of Industrial Microbial Fermentation[J]. China Biotechnology, 2020, 40(6): 93-99.
[6] Yi-man LI,Qin ZHOU. The Effects of Herpud1 on Metanephric Mesenchymal Cells and Its Mechanism[J]. China Biotechnology, 2018, 38(3): 9-15.
[7] YAO Chang-hong, WU Pei-chun, CAO Xu-peng, LIU Jiao, JIANG Jun-peng, XUE Song. Comparative Characterization of Two Arthrospira Strains Isolated from Full-scale Raceway Pond[J]. China Biotechnology, 2017, 37(5): 28-37.
[8] ZHANG Xue, TAO Lei, QIAO Sheng, DU Bing-hao, GUO Chang-hong. Roles of Glutathione S-transferase in Plant Tolerance to Abiotic Stresses[J]. China Biotechnology, 2017, 37(3): 92-98.
[9] SHAN hong-yu, LIU Ren-ze, HAO Meng-qi, DONG Xiao-yu, GUO Chang-hong, GUO Dong-lin. Phytoferritin and the Response to Oxidative Stress[J]. China Biotechnology, 2017, 37(2): 121-126.
[10] ZHANG Li-li, XU Bi-yu, LIU Ju-hua, JIA Cai-hong, ZHANG Jian-bin, JIN Zhi-qiang. Analysis of Banana MaASR1 Gene Expression Profiles in Arabidopsis Under Drought Stress[J]. China Biotechnology, 2017, 37(11): 59-73.
[11] WANG Li-qun, LU Hong-zhong, CHU Ju, WANG Yong-hong. Dissolved Carbon Dioxide Effects on Glucoamylase Synthesis of Aspergillus niger in Batch and Chemostat Cultures[J]. China Biotechnology, 2017, 37(1): 27-37.
[12] HAN Han, BAO Dan-qi, YANG Fei-yun, LIU Kun, YANG Tian-rui, YANG Qi, LI Guo-jing, WANG Rui-gang. The Cloning and Function Analysis in Flavonoid Pathway of CiCHIL from Caragana intermedia[J]. China Biotechnology, 2016, 36(9): 11-20.
[13] CHEN Qing, ZHU Hong-fei, GUO Xiao-yu. Progress on DNA Innate Immune Recognition Receptors[J]. China Biotechnology, 2016, 36(5): 112-117.
[14] LI Shuai, SHAN Hong-yu, DONG Xiao-yu, GUO Chang-hong, GUO Dong-lin. The Role of Phosphoinositide Phospholipase C in Expression Regulation of DREB2[J]. China Biotechnology, 2016, 36(4): 110-115.
[15] SU Zhi-zhe, WANG Xue-hua, YANG Hua, SUN Huan, WEI Wei. Transcriptome Analysis of Cadmium Exposed Jatropha curcas[J]. China Biotechnology, 2016, 36(4): 69-77.