Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2016, Vol. 36 Issue (9): 11-20    DOI: 10.13523/j.cb.20160902
    
The Cloning and Function Analysis in Flavonoid Pathway of CiCHIL from Caragana intermedia
HAN Han, BAO Dan-qi, YANG Fei-yun, LIU Kun, YANG Tian-rui, YANG Qi, LI Guo-jing, WANG Rui-gang
College of Life Science, Inner Mongolia Agricultual University, Hohhot 010018, China
Download: HTML   PDF(2073KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Secondary metabolites of plants colour fruits and flowers, favouring seed and pollen dispersal, and contribute to plant adaptation to environmental conditions and pathogen attacks. The general phenylpropanoid pathway is an important secondary metabolic pathway in plant,it provides precursors for several branches leading to the elaboration of thousands of compounds. A key branch-point enzyme of the phenylpropanoid pathway, chalcone isomerase (CHI), catalyzes the reaction producing flavanones, the skeletal backbone for many downstream metabolites. This reaction is conducted by the cyclization of naringenin chalcone to naringenin. An CHI encoding gene fragment was isolated from the suppression subtractive hybridization library of Caragana intermedi Kom., sequence and phylogenetic analysis indicatead that the protein belongs to the CHIL subfamily,therefore it was desingnated as CiCHIL.Real-time quantitive PCR analysis showed that the transcript of CiCHIL was induced under UV-B treatment,and overexpression of CiCHIL enhanced the resistance to UV-B. RNA and protein expression levels were detected in the overexpression lines,determination of total flavonoids in selected overexpression lines.The results showed that the content of total flavonoids was significantly higher than that of wild type.



Key wordsWestern blot      CHI      Total flavonoids content      UV-B stress      Caragana intermedia     
Received: 03 May 2016      Published: 25 September 2016
ZTFLH:  Q946.83  
Cite this article:

HAN Han, BAO Dan-qi, YANG Fei-yun, LIU Kun, YANG Tian-rui, YANG Qi, LI Guo-jing, WANG Rui-gang. The Cloning and Function Analysis in Flavonoid Pathway of CiCHIL from Caragana intermedia. China Biotechnology, 2016, 36(9): 11-20.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20160902     OR     https://manu60.magtech.com.cn/biotech/Y2016/V36/I9/11

[1] 杨昌友,李楠,马晓强.锦鸡儿属植物区系成份分析.植物研究,1990,10(4):93-99. Zhang C Y, Li N, Ma X Q.The floristic analysis of genus caragana.Bulletin of Botanical Research,1990,10(4):93-99.
[2] Hansson A C,Aifen Z,Andren O.Fine-root production and mortality in degraded vegetation in horqin sandy rangeland in inner mongolia,China.Arid Soil Research and Rehabilitation, 1995,9(1),1-13.
[3] 高海峰.白皮锦鸡儿黄酮及其抗菌和抗氧化活性.石河子:石河子大学,农学院,2011. Gao H F.Flavonoida from Caragana leucophloea and Their Antimicrobial and Antioxidant Activities.Shihezi:Shihezi University,College of Agricultural,2011.
[4] Hichri I, Barrieu F, Bogs J,et al.Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway. Journal of Experimental Botany, 2011,62(8):2465-2483.
[5] Aoki T, Akashi T, Ayabe S.Flavonoids of leguminous plants:structure, biological activity,and biosynthesis. J Plant Res,2000,113(4):475-488.
[6] Peer W A, Murphy A S. Flavonoids and auxin transport:modulators or regulators? Trends Plant Sci, 2007,12(12):556-563.
[7] Ferrer J L,Austin M B,Stewart C Jr,et al.Structure and function of enzymes involved in the biosynthesis of phenylpropanoids.Plant Physiol Biochem,2008,46(3):356-370.
[8] Winkel-Shirley B.How work on diverse plant species has contributed to an understanding of flavonoid metabolism. Plant Physiol, 2001,127(4):1399-1404.
[9] Ferguson J B, Mathesius U.Signalling interactions during nodule development.Journal of Plant Growth Regulation,2013,22(1):47-72.
[10] Lozovaya V V, Lygin A V, Zernova O V,et al.Isoflavonoid accumulation in soybean hairy roots upon treatment with Fusarium solani. Plant Physiol Biochem,2004,42(7-8):671-679.
[11] Phillips D A, Kapulnik Y.Plant isoflavonoids, pathogens and symbionts.Trends Microbiol, 1995,3(2):58-64.
[12] Subramanian S,Stacey G, Yu O.Endogenous isoflavones are essential for the establishment of symbiosis between soybean and Bradyrhizobium japonicum.Plant J,2006,48(2):261-273.
[13] Jez J M,Bowman M E,Noel J P.Role of hydrogen bonds in the reaction mechanism of chalcone isomerase. Biochemistry,2002, 41(16):5168-5176.
[14] Gensheimer M,Mushegian A.Chalcone isomerase family and fold:no longer unique to plants. Protein Sci,2004,13(2):540-544.
[15] Jez J M, Bowman M E, Dixon R A,et al.Structure and mechanism of the evolutionarily unique plant enzyme chalcone isomerase. Nat Struct Biol, 2000,7(9):786-791.
[16] Ngaki M N, Louie G V, Philippe R N,et al.Evolution of the chalcone-isomerase fold from fatty-acid binding to stereospecific catalysis.Nature,2012, 485(7399):530-533.
[17] Jiang W, Yin Q,Wu R,et al.Role of a chalcone isomerase-like protein in flavonoid biosynthesis in Arabidopsis thaliana.J Exp Bot,2015,66(22):7165-7179.
[18] Ralston L,Subramanian S,Matsuno M,et al.Partial reconstruction of flavonoid and isoflavonoid biosynthesis in yeast using soybean type I and type Ⅱ chalcone isomerases.Plant Physiol,2005,137(4):1375-1388.
[19] Dastmalchi M, Dhaubhadel S.Soybean chalcone isomerase:evolution of the fold, and the differential expression and localization of the gene family;Planta,2015, 241(2):507-523.
[20] 王玉. UV-B胁迫下番茄叶绿体单脱氢抗坏血酸还原酶基因的功能分析.济南:山东农业大学,生命科学学院,2014. Wang Y. Functional Analysis of the LeMDAR in Tomato under UV-B Stress.Jinan:Shan Dong Agricutural University,College of Life Science,2014.
[21] 张兰杰,辛广,张维华.双波长分光光度法测定黑玉米花粉中总黄酮的含量. 食品科学,2006,27(2),230-231. Zhang J L, Xin G, Zhang W H.Assaying total flavonoid in black corn pollen by double-wavelength spectrophotometry.Food Science,2006,27(2):230-231.
[22] Solano R, Nieto C, Avila J, et al.Dual DNA binding specificity of a petal epidermis-specific MYB transcription factor (MYB. Ph3) from Petunia hybrida. EMBO J,1995,14(8):1773-1784.
[23] Yoshioka S,Taniguchi F,Miura K,et al.The novel Myb transcription factor LCR1 regulates the CO2-responsive gene Cah1, encoding a periplasmic carbonic anhydrase in Chlamydomonas reinhardtii. Plant Cell, 2004,16(6):1466-1477.
[24] Xu F,Cheng H,Cai R,et al.Molecular cloning and function analysis of an anthocyanidin synthase gene from Ginkgo biloba, and its expression in abiotic stress responses. Mol Cells, 2008,26(6):536-547.
[25] Li J,Ou-Lee T M,Raba R,et al.Arabidopsis flavonoid mutants are hypersensitive to UV-B irradiation. Plant Cell,1993,5(2):171-179.
[26] Gill S S,Tuteja N.Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem, 2010,48(12):909-930.
[27] Rizhsky L,Liang H J,Mittler R.The combined effect of drought stress and heat shock on gene expression in tobacco.Plant Physiology, 2002, 130(3):1143-1151.
[26] Hirakura K,Hano Y,Fukai T.Structures of three new natural Diels-Alder type adducts, kuwanons P and X,and mulberrofuran J,from the cultivated mulberry tree. Chem Pharm Bull,1985,33(3):1088-1096.
[27] Ross S A, Rodríguez-Guzmán R, Radwan M M,et al. Sorocenols G and H, anti-MRSA oxygen heterocyclic Diels-Alder-type adducts from Sorocea muriculata roots. J Nat Prod. 2008,71(10):1764-1767.
[28] Sheeba, Pratap Singh V, Kumar Srivastava P,et.al. Differential physiological and biochemical responses of two cyanobacteria Nostoc muscorum and Phormidium foveolarum against oxyfluorfen and UV-B radiation. Ecotoxicol Environ Saf,2011, 74(7):1981-1993.

[1] QIAO Sheng-tai,WANG Man-qi,XU Hui-ni. Functional Analysis of Prokaryotic Expression Protein of Tomato SlTpx in Vitro[J]. China Biotechnology, 2021, 41(8): 25-32.
[2] XU Ye-chun,LIU Hong,LI Jian-feng,SHEN Jing-shan,JIANG Hua-liang. Recent Progress in Drug Development against COVID-19[J]. China Biotechnology, 2021, 41(6): 111-118.
[3] HE Ruo-yu,LIN Fu-yu,GAO Xiang-dong,LIU Jin-yi. Research and Application Progress of Signal Peptides in Escherichia coli Secretion Systems[J]. China Biotechnology, 2021, 41(5): 87-93.
[4] SHI Zhong-lin,CUI Jun-sheng,YANG Ke,HU An-zhong,LI Ya-nan,LIU Yong,DNEG Guo-qing,ZHU Can-can,ZHU Ling. Research Progress in Isothermal Amplification of Nucleic Acid Based on Microfluidic Chip[J]. China Biotechnology, 2021, 41(2/3): 116-128.
[5] CHEN Zhong-wei,ZHENG Pu,CHEN Peng-cheng,WU Dan. Screening and Characterization of Thermostable Phytase Mutants[J]. China Biotechnology, 2021, 41(2/3): 30-37.
[6] WU Han-rong,WANG Ying,HUANG Ying-ming,LI Dong-xue,LI Zhi-fei,FANG Zi-han,FAN Lin. Promote the Innovation and Transformation of Biotechnology by Base Platform[J]. China Biotechnology, 2021, 41(12): 141-147.
[7] CHEN Xin-jie,QIAN Zhi-lan,LIU Qi,ZHAO Qing,ZHANG Yuan-xing,CAI Meng-hao. Modification of Aromatic Amino Acid Synthetic Pathway in Pichia pastoris to Produce Cinnamic Acid and ρ-Coumaric Acid[J]. China Biotechnology, 2021, 41(10): 52-61.
[8] SHI Peng-cheng, JI Xiao-jun. Advances in Expression of Human Epidermal Growth Factor in Yeast[J]. China Biotechnology, 2021, 41(1): 72-79.
[9] HUANG Zhao-hong,HUANG Yun-hong,HUANG Yan-mei,LONG Zhong-er,SHAN Shan. Advances in Detection and Typing of Diarrheal Escherichia coli with PCR[J]. China Biotechnology, 2020, 40(7): 82-90.
[10] LE Yi-lin,FU Yu,NI Li,SUN Jian-zhong. Expression and Characterization of a Thermostable Pyruvate Ferredoxin Oxidoreductase from the Hyperthermophile Thermotoga neapolitana and Its Application in Acetyl-CoA Production[J]. China Biotechnology, 2020, 40(3): 72-78.
[11] KONG Jian-tao,ZHUANG Ying-ping,GUO Mei-jin. Enhancement of Anti-CD20 Monoclonal Antibody Expression by CHO based on DOE and Amino Acid Supplemental Strategy[J]. China Biotechnology, 2020, 40(12): 41-48.
[12] XU Ying-yong. Current Status and Challenges of Gene Therapy Products[J]. China Biotechnology, 2020, 40(12): 95-103.
[13] Hang Hai-ying,Liu Chun-chun,Ren Dan-dan. Development, Application and Prospection of Flow Cytometry[J]. China Biotechnology, 2019, 39(9): 68-83.
[14] LIANG Zhen-xin,LIU Fang,ZHANG wei,LIU Qing-you,LI Li. The Preparation and Validation of p185 erb B2 Human-mouse Chimeric Antibody ChAb26 Transgenic Mice Mammary Gl and Bioreactor[J]. China Biotechnology, 2019, 39(8): 40-51.
[15] Yuan TIAN,Yan-ling LI. Biosynthesis of Fusaruside Based on Recombinant Pichia pastoris[J]. China Biotechnology, 2019, 39(7): 8-14.