Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2017, Vol. 37 Issue (2): 121-126    DOI: 10.13523/j.cb.20170217
    
Phytoferritin and the Response to Oxidative Stress
SHAN hong-yu, LIU Ren-ze, HAO Meng-qi, DONG Xiao-yu, GUO Chang-hong, GUO Dong-lin
Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province College of Life Science and Technology Harbin Normal University, Harbin 150025, China
Download: HTML   PDF(396KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Phytoferritin is an important iron regulatory protein in plants. Many studies have shown that phytoferritin has strong connection with oxidative stress resistance. Phytoferritin can not only defense the oxidation toxic from high iron, it also play a role in a lot of resistance to oxidative and environmental stress. The responses of phytoferritin to oxidative and environment stress are reviewed, to provide basis for the application of phytoferritin in biotechnology.



Key wordsOxidative stress      Resistance      Phytoferritin      Environment stress     
Received: 08 October 2016      Published: 25 February 2017
ZTFLH:  Q812  
Cite this article:

SHAN hong-yu, LIU Ren-ze, HAO Meng-qi, DONG Xiao-yu, GUO Chang-hong, GUO Dong-lin. Phytoferritin and the Response to Oxidative Stress. China Biotechnology, 2017, 37(2): 121-126.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20170217     OR     https://manu60.magtech.com.cn/biotech/Y2017/V37/I2/121

[1] Theil E C. Ferritin:structure, gene regulation, and cellular function in animals, plants, and microorganisms. Annu Rev Biochem, 1987, 56:289-315.
[2] Harrison P M, Arosio P. The ferritins:molecular properties, iron storage function and cellular regulation. Biochim Biophys Acta, 1996, 1275(3):161-203.
[3] Balla G, Jacob H S, Balla J, et al. Ferritin:a cytoprotective antioxidant strategem of endothelium. J Biol Chem, 1992, 267(25):18148-18153.
[4] Müller C, Kuki K N, Pinheiro D T, et al. Differential physiological responses in rice upon exposure to excess distinct iron forms. Plant & Soil, 2015, 391(1-2):123-138.
[5] Vranov E, Inz D, Van Bresegem F. Signal transduction during oxidative stress.J Exp Bot, 2002, 53:1227-1236.
[6] Asada K.The water-water cycle in chloroplast:Scavenging of active oxygen and dissipation of excess photons.Annu Rev Plant Physiol Plant Mol Biol, 1999, 50:601-639.
[7] Delaat D M, Colombo C A, Chiorato A F, et al. Induction of ferritin synthesis by water deficit and iron excess in common bean (Phaseolus vulgaris L.). Mol Biol Rep, 2014, 41(3):1427-1435.
[8] Mandal L N, Haldar M. Influence of phosphorus and zinc application on the availability of zinc, copper, iron, manganese, and phosphorus in waterlogged rice soils. Soil Science, 1980, 130(5):251-257.
[9] Zhao G, Bou-Abdallah F, Arosio P, et al. Multiple pathways for mineral core formation in mammalian apoferritin. The role of hydrogen peroxide. Biochem, 2003, 42(10):3142-3150.
[10] Hintze K J, Theil E C. Cellular regulation and molecular interactions of the ferritins. Cell Mol Life Sci, 2006, 63(5):591-600.
[11] Su M, Cavallo S, Stefanini S, et al. The so-called Listeria innocua ferritin is a Dps protein. Iron incorporation, detoxification, and DNA protection properties. Biochem, 2005, 44(15):5572-5578.
[12] Briat J F, Ravet K, Arnaud N, et al. New insights into ferritin synthesis and function highlight a link between iron homeostasis and oxidative stress in plants. Ann Bot, 2010, 105(5):811-822.
[13] Ravet K, Touraine B, Boucherez J, et al. Ferritins control interaction between iron homeostasis and oxidative stress in Arabidopsis. Plant J, 2009, 57(3):400-412.
[14] Jain A, Connolly E L. Mitochondrial iron transport and homeostasis in plants. Front Plant Sci, 2013, 4(16):348.
[15] Tomasi N, Cesco S. Micro-analytical, physiological and molecular aspects of Fe acquisition in leaves of Fe-deficient tomato plants re-supplied with natural Fe-complexes in nutrient solution. Plant & Soil, 2009, 325(1):25-38.
[16] Itai R N, Ogo Y, Kobayashi T, et al. Rice genes involved in phytosiderophore biosynthesis are synchronously regulated during the early stages of iron deficiency in roots. Rice (N Y), 2013, 6(1):1-16.
[17] Sivaprakash K R, Krishnan S, Datta S K, et al. Tissue-specific histochemical localization of iron and ferritin gene expression in transgenic indica rice Pusa basmati(Oryza sativa L.). J Genet, 2006, 85(2):157-160.
[18] Sudre D, Gutierrez-Carbonell E, Lattanzio G, et al. Iron-dependent modifications of the flower transcriptome, proteome, metabolome, and hormonal content in an Arabidopsis ferritin mutant. J Exp Bot, 2013, 64(10):2665-2688.
[19] DeLaat D M, Colombo C A, Chiorato A F, et al. Induction of ferritin synthesis by water deficit and iron excess in common bean (Phaseolus vulgaris L.). Mol Biol Rep, 2014, 41(3):1427-1435.
[20] Ravet K, Reyt G, Arnaud N, et al. Iron and ROS control of the Downs Tream mRNA decay pathway is essential for plant fitness. EMBO J, 2012, 31(1):175-186.
[21] Bottcher A, Nobile P M, Martins P F, et al. A role for ferritin in the antioxidant system in coffee cell cultures. Biometals, 2011, 24(2):225-237.
[22] Kang J H. Oxidative damage of DNA induced by ferritin and hydrogen peroxide. B Kor Chem Soc, 2010, 31(10):2873-2876.
[23] Petit J M, Briat J F, Lobréaux S. Structure and differential expression of the four members of the Arabidopsis thaliana ferritin gene family. Biochem J, 2001, 359(3):575-582.
[24] Scarpeci T E, Zanor M I, Carrillo N, et al. Generation of superoxide anion in chloroplasts of Arabidopsis thaliana during active photosynthesis:a focus on rapidly induced genes. Plant Mol Biol, 2008, 66(4):361-378.
[25] Han H J, Peng R H, Zhu B, et al. Gene expression profiles of Arabidopsis under the stress of methyl viologen:a microarray analysis. Mol Biol Rep, 2014, 41(11):7089-7102.
[26] Fobis-Loisy I, Loridon K, Lobréaux S, et al. Structure and differential expression of two maize ferritin genes in response to iron and abscisic acid. Eur J Biochem, 1995, 231(3):609-619.
[27] Jithesh M N, Prashanth S R, Sivaprakash K R, et al. Monitoring expression profiles of antioxidant genes to salinity, iron, oxidative, light and hyperosmotic stresses in the highly salt tolerant grey mangrove, Avicennia marina (Forsk.) Vierh. by mRNA analysis. Plant Cell Rep, 2006, 25(8):865-876.
[28] Stein R J, Ricachenevsky F K, Fett J P. Differential regulation of the two rice ferritin genes (OsFER1 and OsFER2). Plant Sci, 2010, 177(6):563-569.
[29] Shevyakova N, Eshinimaeva B, Kuznetsov V. Expression of ferritin gene in Mesembryanthemum crystallinum plants under different supply with iron and different intensity of oxidative stress. Russ J Plant Physiol, 2011, 58(5):768-775.
[30] Tarantino D, Vannini C, Bracale M, et al. Antisense reduction of thylakoidal ascorbate peroxidase in Arabidopsis enhances paraquat-induced photooxidative stress and nitric oxide-induced cell death. Planta, 2005, 221(6):757-765.
[31] Murgia I, Arnaud N, Boucherez J, et al. An iron-induced nitric oxide burst precedes ubiquitin-dependent protein degradation for Arabidopsis AtFer1 ferritin gene expression. J Biol Chem, 2006, 281(33):23579-23588.
[32] Li Q Y, Niu H B, Yin J, et al. Protective role of exogenous nitric oxide against oxidative-stress induced by salt stress in barley (Hordeum vulgare). Colloid Surface B, 2008, 65(2):220-225.
[33] Savino G, Briat J F, Lobréaux S. Inhibition of the iron-induced ZmFer1 maize ferritin gene expression by antioxidants and serine/threonine phosphatase inhibitors. J Biol Chem, 1997, 272(52):33319-33326.
[34] Murgia I, Delledonne M, Soave C. Nitric oxide mediates iron-induced ferritin accumulation in Arabidopsis. Plant J, 2002, 30(5):521-528.
[35] Fobis-Loisy I, Loridon K, Lobréaux S, et al. Structure and differential expression of two maize ferritin genes in response to iron and abscisic acid. Eur J Biochem, 1995, 231(3):609-619.
[36] Kumar T R, Prasad M N. Ferritin induction by iron mediated oxidative stress and ABA in Vigna mungo (L.) Hepper seedlings:role of antioxidants and free radical scavengers. J Plant Physiol, 1999, 155(4-5):652-655.
[37] Majerus V, Bertin P, Lutts S. Abscisic acid and oxidative stress implications in overall ferritin synthesis by African rice (Oryza glaberrima Steud.)seedlings exposed to short term iron toxicity. Plant & Soil, 2009, 324(1):253-265.
[38] 聂玉哲, 张晓磊, 李玉花.星星草铁蛋白基因PtFer的克隆及表达分析.生物技术通讯, 2011, 22(1):32-36. Nie Y Z, Zhang X L, Li Y H. Molecular cloning and expression analysis of ferritin related gene PtFer of Puccinellia tenuiflora. Letters in Biotechnology, 2011, 22(1):32-36.
[39] 牛洪斌, 尹钧, 邓德志,等.大麦铁蛋白基因(HvFer1)cDNA的克隆和表达.植物生理学报, 2007, 43(6):1015-1019. Niu H B, Yin J, Deng D Z, et al. Clone and expression of HvFer1 cDNA from barley. J Plant Physiol, 2007, 43(6):1015-1019.
[40] Chen J, Song Y, Zhang H, et al. Genome-wide analysis of gene expression in response to drought stress in Populus simonii. Plant Mol Biol Report, 2013, 31(4):946-962.
[41] Xu C, Huang B. Proteins and metabolites regulated by trinexapacethyl in relation to drought tolerance in Kentucky bluegrass. J Plant Growth Regul, 2011, 31(1):25-37.
[42] Baird L M, Dalton D A, Iturbe-Ormaetxe I, et al. Stress-induced legume root nodule senescence. Physiological, biochemical, and structural alterations. Plant Physiol, 1999, 121(1):97-112.
[43] Rajabbeigi E, Ghanati F, Abdolmaleki P, et al. Antioxidant capacity of parsley cells (Petroselinum crispum L.) in relation to iron-induced ferritin levels and static magnetic field. Electromagn Biol Med, 2013, 32(4):430-441.
[44] Mata C G, Lamattina L, Cassia R O. Involvement of iron and ferritin in the potato-Phytophthora infestans interaction. Eur J Plant Pathol, 2001, 107(5):557-562.
[45] Mhatre M, Srinivas L, Ganapathi T R. Enhanced iron and zinc accumulation in genetically engineered pineapple plants using soybean ferritin gene. Biol Trace Elem Res, 2011, 144(1-3):1219-1228.
[46] Kumar G B, Srinivas L, Ganapathi T R. Iron fortification of banana by the expression of soybean ferritin. Biol Trace Elem Res, 2011, 142(2):232-241.
[47] Boonyaves K, Gruissem W, Bhullar N K. NOD promoter-controlled AtIRT1 expression functions synergistically with NAS and ferritin genes to increase iron in rice grains. Plant Mol Biol, 2016, 90(3):207-215.
[48] Zhao Y J, Shui X Y, Wang X P, et al. Ectopic expression of the Vigna eylindrica ferritin gene enhanced heat tolerance in transgenic wheat (Triticum aestivum L.). Euphytica, 2016, 209(1):23-30.
[49] Zok A, Oláh R, Hideg É, et al. Effect of Medicago sativa ferritin gene on stress tolerance in transgenic grapevine. Plant Cell Tissue Organ, 2010, 100(3):339-344.
[50] 赵永亮, 陈静, 王丹, 等. 转小麦铁蛋白基因酵母的抗氧化活性. 作物学报, 2010, 36(7):1169-1175. Zhao Y L, Chen J, Wang D, et al. Antioxidative activities of transgenic yeast with ferritin gene from wheat. Acta Agronomica Sinica, 2010, 36(7):1169-1175.
[51] 姜廷波, 唐鑫华, 李凤娟,等. 铁蛋白基因表达对烟草耐低铁能力的影响. 植物学通报, 2008, 25(2):167-175. Jiang T B, Tang X H, Li F J, et al. Effects of ferritin gene expression on transgenic tobacco for low iron tolerance. Chin Bull Botany, 2008, 25 (2):167-175.
[52] 唐鑫华, 姜廷波, 高红秀, 等. 转NtFer1基因粳稻空育131抗Fe2+胁迫能力分析. 生物技术通报, 2016, 32(8):77-83. Tang X H, Jiang T B, Gao H X, et al. Analysis on Fe2+ stress resistance of transgenic Japonica kongyu 131 with NtFer1. Biotechnology Bulletin, 2016, 32(8):77-83.
[53] Deák M, Horváth G V, Davletova S, et al. Plants ectopically expressing the iron-binding protein, ferritin, are tolerant to oxidative damage and pathogens. Nature Biotechnology, 1999, 17 (2):192-196.
[54] Hegedûs A, Erdei S, Janda T, et al. Effects of low temperature stress on ferritin or aldose reductase overexpressing transgenic tobacco plants. Acta Biologica Szegediensis, 2002, 46(3-4):97-99.

[1] QIAO Sheng-tai,WANG Man-qi,XU Hui-ni. Functional Analysis of Prokaryotic Expression Protein of Tomato SlTpx in Vitro[J]. China Biotechnology, 2021, 41(8): 25-32.
[2] DONG Xue-ying,LIANG Kai,YE Ke-ying,ZHOU Ce-fan,TANG Jing-feng. Advances in the Regulation of Receptor Tyrosine Kinase on Autophagy[J]. China Biotechnology, 2021, 41(5): 72-78.
[3] XUE Zhi-yong,DAI Hong-sheng,ZHANG Xian-yuan,SUN Yan-ying,HUANG Zhi-wei. Effects of Vitreoscilla Hemoglobin Gene on Growth and Intracellular Oxidation State of Saccharomyces cerevisiae[J]. China Biotechnology, 2021, 41(11): 32-39.
[4] HAO Xiao-ting,LIU Jun-jie,DENG Yu-lin,ZHANG Yong-qian. Radiation Biosensor Based on Promoter of SOS Reaction and Oxidative Stress Reaction[J]. China Biotechnology, 2020, 40(7): 30-40.
[5] DAI Qi-nan,ZHANG Jing-hong. Advances in Molecular Mechanisms Related to Tumor Multi-drug Resistance, Autophagy, DNA Repair and Tumor Stem Cells[J]. China Biotechnology, 2020, 40(4): 69-77.
[6] TANG Xin,MAO Xin-fang,MA Bin-yun,GOU Ping. Antimicrobial Peptides: Current Status and Future Challenges[J]. China Biotechnology, 2019, 39(8): 86-94.
[7] Pan-hong ZHANG,Lian-lian LI,Xiu-mei ZHANG,Jia-jun CUI,Yin-jie JIANG. Advances in the Relationship Between microRNA and Chemotherapy Resistance of Lung Cancer[J]. China Biotechnology, 2019, 39(7): 79-84.
[8] ZENG Qiang,MENG Qiu-cheng,DENG Li-hua,LI Jin-jiang,YU Jiang-hui,WENG Lu-shui,XIAO Guo-ying. Identification and Analysis of Important Phenotypes of E1C608 with Glyphosate Resistance and Lepidopteran Resistance in Rice[J]. China Biotechnology, 2019, 39(11): 31-38.
[9] LI Wen,CHEN Jie,HU Wei-nan,QI Ya-yun,FU Yi-hong,LIU Jia-min,WANG Zhen-chao,OUYANG Gui-ping. Research Advances in the Study of EGFR Mutations Resistance and Its Small Molecule Inhibitors[J]. China Biotechnology, 2019, 39(10): 97-104.
[10] Xiao-yong ZHANG,Qian-cheng LUO. Establishment and Clinical Application of LNA-PCR Assay Detecting Hepatitis B Virus Adefovir Dipivoxil Resistance[J]. China Biotechnology, 2018, 38(9): 48-54.
[11] Jun-jie ZHAO,Long ZHANG,Liang WANG,Xu-sheng CHEN,Zhong-gui MAO. Breeding and Physiological Characteristics of ε-Polylysine High-Producing Strain with Double Antibiotic Resistance[J]. China Biotechnology, 2018, 38(8): 59-68.
[12] Zhong-yang YE,Huai-yu QIU,Bing-hua ZHU,Ze LI,Ye ZHU,Li-gui WANG. Research Progress of sRNA Regulates the Expression of Genes in Related with Bacterial Resistance[J]. China Biotechnology, 2018, 38(7): 89-93.
[13] Min YAO,Shu-hua ZHU,Fo-sheng LI,Shi-yan ZHANG,Lin TANG. Analysis of Salt Tolerance and Insect Resistance of Transgenic Tobacco Expressing AtCYSa from Arabidopsis[J]. China Biotechnology, 2018, 38(4): 8-16.
[14] Jia-wei ZENG,Guo-feng HOU,Ji-ping ZHENG,Nou YANG,Ji-feng ZENG,Gui-ying GUO. The Progress of CRISPR/Cas System Used As Antimicrobials[J]. China Biotechnology, 2018, 38(11): 59-65.
[15] Jia-ao GE,Chang LIU,Jian-gang GONG,Yan-qin LIU. Research Progress of Antibacterial Cyclopeptides[J]. China Biotechnology, 2018, 38(11): 76-83.