Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2021, Vol. 41 Issue (8): 25-32    DOI: 10.13523/j.cb.2104030
    
Functional Analysis of Prokaryotic Expression Protein of Tomato SlTpx in Vitro
QIAO Sheng-tai,WANG Man-qi,XU Hui-ni()
College of Life Science and Technology,Kunming University of Science and Technology,Kunming 650500,China
Download: HTML   PDF(1775KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

H2O2 is an important signaling molecule that participates in a variety of physiological metabolic activities in plants. However, excessive H2O2 destroys biological macromolecules, thus poisoning cells. Thioredoxin peroxidase (Tpx) plays an important role in protecting plants from oxidative damage by scavenging H2O2. The prokaryotic expression vector of tomato Tpx gene (SlTpx) was established, and SlTpx protein was induced and purified, and we found that the size of SlTpx protein was about 21 kDa. In vitro mixed functional oxidase (MFO) assay showed that SlTpx could protect DNA from harmful reactive oxygen species. In vitro experiments on SlTpx protein showed that SlTpx could improve the anti-heavy metal toxicity and antioxidant capacity of Escherichia coli. It laid a foundation for further study on the function and mechanism of SlTpx in plants.



Key wordsThioredoxin peroxidase      Prokaryotic expression      Escherichia coli      Oxidative stress     
Received: 18 April 2021      Published: 31 August 2021
ZTFLH:  Q816  
Corresponding Authors: Hui-ni XU     E-mail: xuhn@kust.edu.cn
Cite this article:

QIAO Sheng-tai,WANG Man-qi,XU Hui-ni. Functional Analysis of Prokaryotic Expression Protein of Tomato SlTpx in Vitro. China Biotechnology, 2021, 41(8): 25-32.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2104030     OR     https://manu60.magtech.com.cn/biotech/Y2021/V41/I8/25

Fig.1 Amino acid sequence of pet-28a-sltpx and construction of prokaryotic expression vector (a)Amino acid sequence and molecular weight of SlTpx (b)Schematic diagram of gene expression vector (c)The PCR analysis of pET-28a-SlTpx vector
Fig.2 Optimization of expression conditions of recombinant SlTpx in E. coli with 0.5 mmol/L IPTG at 28℃ and 37℃ for 0, 2,4, 6 and 8 h M: Protein marker
Fig.3 SDS-PAGE analysis of the purified SlTpx M: Protein marker
Fig.4 Western blotting analysis of recombinant proteins in the E. coli BL21(DE3) cells with anti-His-tag antibody M: Protein marker
Fig.5 Determination of SlTpx protected supercoiled DNA cleavage in mixed-function oxidase (MFO) assay 1: pEGFP without incubation; 2: pEGFP + FeCl3(10 μmol/L); 3: pEGFP + DTT (10 mmol/L); 4: pEGFP + MFO mix(10 μmol/L FeCl3+10 mmol/L DTT); 5: pEGFP + MFO mix + 1 μg of SlTpx; 6:pEGFP + MFO mix + 4 μg of SlTpx; 7: pEGFP+MFO mix + 8 μg of SlTpx; 8: pEGFP + MFO mix + 16 μg of SlTpx; 9: pEGFP + MFO mix + 24 μg of SlTpx. OC DNA: Open circular plasmid DNA; CCC DNA: Covalentlyclosed circular DNA
Fig.6 Hydrogen peroxide-scavenging assay for the recombinant SlTpx proteins treated with H2O2 The absorbance at 560 nm was measured every minute until 20 min after H2O2 was added. Empty pET28a vector expressed protein were used as the negative control
Fig.7 In vitro metal stress tolerance assay of SlTpx protein (a)The growth of Escherichia coli in pET-28a-SlTpx experimental group and pET-28a control group stimulated by 0.1 and 1 mol/L heavy metals (b)Inhibition zone diameter of E. coli after H2O2 challenge Data was showed as mean ± SD (n=3).Error bars above the vertical bars indicated statistically significant differences between every intergroup by the asterisk ** P≤ 0.01
Fig.8 In vivo antioxidant activity assay using SlTpx protein (a)Bacteria transfected with only pET-28a vector were used as the negative controls; LB agar plates (LB with ampicillin) were inoculated with SlTpx protein. Filter discs treated with different concentrations of H2O2, including the concentration of H2O2 at 30%, 20%, 15%,10%, 6%, 3% (b)Inhibition zone diameter of E. coli after H2O2 challenge. Data was showed as mean ± SD (n=3). Error bars above the vertical bars indicated statistically significant differences between every intergroup by the asterisk ** P≤0.01
[1]   Nathan C, Cunningham-Bussel A. Beyond oxidative stress: an immunologist's guide to reactive oxygen species. Nature Reviews Immunology, 2013, 13(5):349-361.
doi: 10.1038/nri3423 pmid: 23618831
[2]   Kimoto H, Yoshimune K, Matsuyma H, et al. Characterization of catalase from psychrotolerant Psychrobacter piscatorii T-3 exhibiting high catalase activity. International Journal of Molecular Sciences, 2012, 13(2):1733-1746.
doi: 10.3390/ijms13021733
[3]   Corona M, Robinson G E. Genes of the antioxidant system of the honey bee: annotation and phylogeny. Insect Molecular Biology, 2006, 15(5):687-701.
doi: 10.1111/j.1365-2583.2006.00695.x pmid: 17069640
[4]   Shi G Q, Yu Q Y, Zhang Z. Annotation and evolution of the antioxidant genes in the silkworm, Bombyx mori. Archives of Insect Biochemistry and Physiology, 2012, 79(2):87-103.
doi: 10.1002/arch.21014
[5]   Zhang Y Y, Mi K H, Ding X M, et al. Characterization of a classical 2-cysteine peroxiredoxin1 gene from Chinese soft-shelled turtle Pelodiscus sinensis with its potent antioxidant properties and putative immune response. Developmental & Comparative Immunology, 2019, 101:103456.
[6]   Circu M L, Aw T Y. Reactive oxygen species, cellular redox systems, and apoptosis. Free Radical Biology & Medicine, 2010, 48(6):749-762.
doi: 10.1016/j.freeradbiomed.2009.12.022
[7]   Woo H A, Yim S H, Shin D H, et al. Inactivation of peroxiredoxin I by phosphorylation allows localized H2O2 accumulation for cell signaling. Cell, 2010, 140(4):517-528.
doi: 10.1016/j.cell.2010.01.009
[8]   Perkins A, Nelson K J, Parsonage D, et al. Peroxiredoxins: guardians against oxidative stress and modulators of peroxide signaling. Trends in Biochemical Sciences, 2015, 40(8):435-445.
doi: 10.1016/j.tibs.2015.05.001 pmid: 26067716
[9]   Kang S W, Rhee S G, Chang T S, et al. 2-Cys peroxiredoxin function in intracellular signal transduction: therapeutic implications. Trends in Molecular Medicine, 2005, 11(12):571-578.
doi: 10.1016/j.molmed.2005.10.006
[10]   Cao Y, Yang Q, Tu X H, et al. Molecular characterization of a typical 2-Cys thioredoxin peroxidase from the Asiatic rice borer Chilo suppressalis and its role in oxidative stress. Archives of Insect Biochemistry and Physiology, 2018, 99(1):e21476. DOI: 10.1002/arch.21476.
doi: 10.1002/arch.21476
[11]   Chen H, Yin Y P, Feng E Y, et al. Thioredoxin peroxidase gene is involved in resistance to biocontrol fungus Nomuraea rileyi in Spodoptera litura: Gene cloning, expression, localization and function. Developmental & Comparative Immunology, 2014, 44(1):76-85.
[12]   Hall A, Karplus P A, Poole L B. Typical 2-Cys peroxiredoxins:structures, mechanisms and functions. The FEBS Journal, 2009, 276(9):2469-2477.
doi: 10.1111/ejb.2009.276.issue-9
[13]   Barranco-Medina S, Krell T, Finkemeier I, et al. Biochemical and molecular characterization of the mitochondrial peroxiredoxin PsPrxII F from Pisum sativum. Plant Physiology and Biochemistry, 2007, 45(10-11):729-739.
pmid: 17881238
[14]   Chatterjee S, Feinstein S I, Dodia C, et al. Peroxiredoxin 6 phosphorylation and subsequent phospholipase A2 activity are required for agonist-mediated activation of NADPH oxidase in mouse pulmonary microvascular endothelium and alveolar macrophages. Journal of Biological Chemistry, 2011, 286(13):11696-11706.
doi: 10.1074/jbc.M110.206623 pmid: 21262967
[15]   Arsova B, Hoja U, Wimmelbacher M, et al. Plastidial thioredoxin z interacts with two fructokinase-like proteins in a thiol-dependent manner: evidence for an essential role in chloroplast development in Arabidopsis and Nicotiana benthamiana. The Plant Cell, 2010, 22(5):1498-1515.
doi: 10.1105/tpc.109.071001
[16]   Shi M, Zhao S, Wang Z H, et al. Cotesia vestalis parasitization suppresses expression of a Plutella xylostella thioredoxin. Insect Molecular Biology, 2016, 25(6):679-688.
doi: 10.1111/imb.12252 pmid: 27376399
[17]   赵晨曦, 南景东, 马春泉, 等. 甜菜M14品系硫氧还蛋白过氧化物酶(BvM14-Tpx)基因在原核及真核细胞中的抗氧化及抗盐能力分析. 黑龙江大学工程学报, 2015, 6(3):62-67, 83.
[17]   Zhao C X, Nan J D, Ma C Q, et al. Oxidation resistance and salt resistance analysis of thioredoxin peroxidase(BvM14-Tpx) gene from Sugar Beet M14 line in transgenic prokaryotic and eukaryotic cells. Journal of Engineering of Heilongjiang University, 2015, 6(3):62-67, 83.
[18]   王剑, 赵兰华, 李冉辉. 肺炎链球菌Tpx蛋白的原核表达、纯化及活性分析. 中国病原生物学杂志, 2017, 12(6):485-488, 494.
[18]   Wang J, Zhao L H, Li R H. Prokaryotic expression and purification of the Tpx protein from Streptococcus pneumoniae. Journal of Pathogen Biology, 2017, 12(6):485-488, 494.
[19]   Gaber A, Yoshimura K, Tamoi M, et al. Induction and functional analysis of two reduced nicotinamide adenine dinucleotide phosphate-dependent glutathione peroxidase-like proteins in Synechocystis PCC 6803 during the progression of oxidative stress. Plant Physiology, 2004, 136(1):2855-2861.
doi: 10.1104/pp.104.044842
[20]   李永光, 袁红. 多头带绦虫TPx基因的生物信息学简析. 畜牧兽医杂志, 2019, 38(4):1-6.
[20]   Li Y G, Yuan H. A brief analysis of the bioinformatics of thioredoxin peroxidase gene of Taenia multiceps. Journal of Animal Science and Veterinary Medicine, 2019, 38(4):1-6.
[1] HE Ruo-yu,LIN Fu-yu,GAO Xiang-dong,LIU Jin-yi. Research and Application Progress of Signal Peptides in Escherichia coli Secretion Systems[J]. China Biotechnology, 2021, 41(5): 87-93.
[2] ZHANG Lei,TANG Yong-kai,LI Hong-xia,LI Jian-lin,XU Yu-xin,LI Ying-bin,YU Ju-hua. Advances in Promoting Solubility of Prokaryotic Expressed Proteins[J]. China Biotechnology, 2021, 41(2/3): 138-149.
[3] XUE Zhi-yong,DAI Hong-sheng,ZHANG Xian-yuan,SUN Yan-ying,HUANG Zhi-wei. Effects of Vitreoscilla Hemoglobin Gene on Growth and Intracellular Oxidation State of Saccharomyces cerevisiae[J]. China Biotechnology, 2021, 41(11): 32-39.
[4] ZHANG Xiao-hang,LI Yuan-yuan,JIA Min-xuan,GU Qi. Identification and Expression of Elastin-like Polypeptides[J]. China Biotechnology, 2020, 40(8): 33-40.
[5] LV Yi-fan,LI Geng-dong,XUE Nan,LV Guo-liang,SHI Shao-hui,WANG Chun-sheng. Prokaryotic Expression, Purification of LbCpf1 Protein Gene and in Vitro Cleavage Activity Assay[J]. China Biotechnology, 2020, 40(8): 41-48.
[6] HAO Xiao-ting,LIU Jun-jie,DENG Yu-lin,ZHANG Yong-qian. Radiation Biosensor Based on Promoter of SOS Reaction and Oxidative Stress Reaction[J]. China Biotechnology, 2020, 40(7): 30-40.
[7] HUANG Zhao-hong,HUANG Yun-hong,HUANG Yan-mei,LONG Zhong-er,SHAN Shan. Advances in Detection and Typing of Diarrheal Escherichia coli with PCR[J]. China Biotechnology, 2020, 40(7): 82-90.
[8] LI Tong-tong,SONG Cai-ling,YANG Kai-yue,WANG Wen-jing,CHEN Hui-yu,LIU Ming. Preparation and Neutralization Activity of Anti-Canine Parvovirus VP2 Protein Single-chain Antibody[J]. China Biotechnology, 2020, 40(4): 10-16.
[9] CHEN Qiu-li,YANG Li-chao,LI Hui,WEN Sha,LI Gang,HE Min. Prokaryotic Expression,Purification and Preparation of Polyclonal Antibody of Human Nek2 Protein[J]. China Biotechnology, 2020, 40(3): 31-37.
[10] Long-bing YANG,Guo GUO,Hui-ling MA,Yan LI,Xin-yu ZHAO,Pei-pei SU,Yon ZHANG. Optimization of Prokaryotic Expression Conditions and Antifungal Activity Detection of Antibacterial Peptide AMPs17 Protein in Musca domestica[J]. China Biotechnology, 2019, 39(4): 24-31.
[11] Xue-ting HE,Min-hua ZHANG,Jie-fang HONG,Yuan-yuan MA. Research Progress on Butanol-Tolerant Strain and Tolerance Mechanism of Escherichia coli[J]. China Biotechnology, 2018, 38(9): 81-87.
[12] Ming-ying LI,Ren-jun WANG,Fun ZHANG,Yan CHI. The Prokaryotic Expression and Activity Analysis of the Fifth Domain of β2GPⅠ and Its Mutants or Short Peptide Fragments[J]. China Biotechnology, 2018, 38(8): 1-9.
[13] Xiao-lu GUO,Xiu-fang GONG,Jia-feng CHEN,Chen-xi DING,Dan HU,Xiu-zhen PAN,Chang-jun WANG. Gene Cloning, Expression and Identification of Phosphoglyceric Kinase of Streptococcus suis Serotype 2[J]. China Biotechnology, 2018, 38(3): 16-23.
[14] Yuan-qiao CHEN,Ding-pei LONG,Xiao-xue DOU,Run QI,Ai-chun ZHAO. Studies on the Protein Purification Ability of an ELP30-Tag in Prokaryotic Expression System[J]. China Biotechnology, 2018, 38(2): 54-60.
[15] HE Ya-nan,SUN Yu-liang,REN Ya-kun,LIANG Sheng-ying,YANG Fen,LIU Yan-li,LIN Jun-tang. The Construction and Functional Analysis of Staphylococcal Enterotoxin-like K and GFP Fusion Protein[J]. China Biotechnology, 2018, 38(12): 14-20.