Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2016, Vol. 36 Issue (5): 112-117    DOI: 10.13523/j.cb.20160516
    
Progress on DNA Innate Immune Recognition Receptors
CHEN Qing1, ZHU Hong-fei2, GUO Xiao-yu2
1. Key Laboratory of Urban Agriculture(North) of Ministry of Agriculture China, Beijing University of Agriculture, Beijing 102206, China;
2. Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Download: HTML   PDF(8256KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The innate immune system deploys pattern recognition receptor(PRR) to detect pathogen-associated molecular pattern(PAMP). Microbial DNA could be recognized by various host DNA sensors that are either membrane-bound or located in the cytosol, and stimulate the production of type I interferons and proinflammatory cytokines. DNA-stimulated innate immune activation plays an important role in antimicrobial response as well as certain autoimmune diseases. The recent progress in identification of novel DNA sensors in host cells, and the related signaling pathways that lead to the innate immune activation were summarized.



Key wordsDNA sensor      Proinflammatory      Innate immunity      Pattern recognition      TypeⅠinterferons      cytokines     
Received: 09 December 2015      Published: 15 February 2016
ZTFLH:  Q789  
Cite this article:

CHEN Qing, ZHU Hong-fei, GUO Xiao-yu. Progress on DNA Innate Immune Recognition Receptors. China Biotechnology, 2016, 36(5): 112-117.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20160516     OR     https://manu60.magtech.com.cn/biotech/Y2016/V36/I5/112

[1] Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell, 2006, 124(4):783-801.
[2] Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell, 2010, 140(6):805-820.
[3] Hemmi H, Takeuchi O, Kawai T, et al. A Toll-like receptor recognizes bacterial DNA. Nature, 2000, 408(6813):740-745.
[4] Dempsey A, Bowie A G. Innate immune recognition of DNA: A recent history. Virology, 2015, 479-480:146-152.
[5] Paludan S R. Activation and regulation of DNA-driven immune responses. Microbiol Mol Biol Rev, 2015, 79(2):225-241.
[6] Yasuda K, Richez C, Uccellini M B, et al. Requirement for DNA CpG content in TLR9-dependent dendritic cell activation induced by DNA-containing immune complexes. J Immunol, 2009, 183(5):3109-3117.
[7] Kawasaki T, Kawai T. Toll-like receptor signaling pathways. Front Immunol, 2014, 5:461-468.
[8] Jensen S B, Paludan S R. Sensing the hybrid-a novel PAMP for TLR9. EMBO J, 2014, 33(6):529-530.
[9] Ohto U, Shibata T, Tanji H, et al. Structural basis of CpG and inhibitory DNA recognition by toll-like receptor 9. Nature, 2015, 520(7549):702-705.
[10] Takaoka A, Wang Z, Choi M K, et al. DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature, 2007, 448(7152):501-505.
[11] Kaiser W J, Upton J W, Mocarski E S. Receptor-interacting protein homotypic interaction motif-dependent control of NF-kappa B activation via the DNA-dependent activator of IFN regulatory factors. J Immunol, 2008, 181(9):6427-6434.
[12] Wang Z, Choi M K, Ban T, et al. Regulation of innate immune responses by DAI (DLM-1/ZBP1) and other DNA-sensing molecules. Proc Natl Acad Sci USA, 2008, 105(14):5477-5482.
[13] Upton J W, Kaiser W J, Mocarski E S. DAI/ZBP1/DLM-1 complexes with RIP3 to mediate virus-induced programmed necrosis that is targeted by murine cytomegalovirus vIRA. Cell Host Microbe, 2012, 11(3):290-297.
[14] Takaoka A, Taniguchi T. Cytosolic DNA recognition for triggering innate immune responses. Adv Drug Deliv Rev, 2008, 60(7):847-857.
[15] Rebsamen M, Heinz L X, Meylan E, et al. DAI/ZBP1 recruits RIP1 and RIP3 through RIP homotypic interaction motifs to activate NF-kappaB. EMBO Rep, 2009, 10(8):916-922.
[16] Burckstummer T, Baumann C, Bluml S, et al. An orthogonal proteomic-genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome. Nat Immunol, 2009, 10(3):266-272.
[17] Fernandes-Alnemri T, Yu J W, Datta P, et al. AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature, 2009, 458(7237):509-513.
[18] Hornung V, Ablasser A, Charrel-Dennis M, et al. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature, 2009, 458(7237):514-518.
[19] Rathinam V A, Jiang Z, Waggoner S N, et al. The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses. Nat Immunol, 2010, 11(5):395-402.
[20] Morrone S R, Matyszewski M, Yu X, et al. Assembly-driven activation of the AIM2 foreign-dsDNA sensor provides a polymerization template for downstream ASC. Nat Commun, 2015, 6:7827-7839.
[21] Schroder K, Tschopp J. The inflammasomes. Cell, 2010, 140(6):821-832.
[22] Unterholzner L, Keating S E, Baran M, et al. IFI16 is an innate immune sensor for intracellular DNA. Nat Immunol, 2010, 11(11):997-1004.
[23] Jakobsen M R, Paludan S R. IFI16: At the interphase between innate DNA sensing and genome regulation. Cytokine Growth Factor Rev, 2014, 25(6):649-655.
[24] Diner B A, Lum K K, Cristea I M. The emerging role of nuclear viral DNA sensors. J Biol Chem, 2015, 290(44):26412-26421.
[25] Cao X. New DNA-sensing pathway feeds RIG-I with RNA. Nat Immunol, 2009, 10(10):1049-1051.
[26] Chiu Y H, Macmillan J B, Chen Z J. RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-I pathway. Cell, 2009, 138(3):576-591.
[27] Fong K S, de Couet H G. Novel proteins interacting with the leucine-rich repeat domain of human flightless-I identified by the yeast two-hybrid system. Genomics, 1999, 58(2):146-157.
[28] Ariake K, Ohtsuka H, Motoi F, et al. GCF2/LRRFIP1 promotes colorectal cancer metastasis and liver invasion through integrin-dependent RhoA activation. Cancer Lett, 2012, 325(1):99-107.
[29] Rikiyama T, Curtis J, Oikawa M, et al. GCF2: expression and molecular analysis of repression. Biochim Biophys Acta, 2003, 1629(1-3):15-25.
[30] Douchi D, Ohtsuka H, Ariake K, et al. Silencing of LRRFIP1 reverses the epithelial-mesenchymal transition via inhibition of the Wnt/beta-catenin signaling pathway. Cancer Lett, 2015, 365(1):132-140.
[31] Yang P, An H, Liu X, et al. The cytosolic nucleic acid sensor LRRFIP1 mediates the production of type I interferon via a beta-catenin-dependent pathway. Nat Immunol, 2010, 11(6):487-494.
[32] Miyashita M, Oshiumi H, Matsumoto M, et al. DDX60, a DEXD/H box helicase, is a novel antiviral factor promoting RIG-I-like receptor-mediated signaling. Mol Cell Biol, 2011, 31(18):3802-3819.
[33] Kim T, Pazhoor S, Bao M, et al. Aspartate-glutamate-alanine-histidine box motif (DEAH)/RNA helicase A helicases sense microbial DNA in human plasmacytoid dendritic cells. Proc Natl Acad Sci USA, 2010, 107(34):15181-15186.
[34] Zhang Z, Yuan B, Bao M, et al. The helicase DDX41 senses intracellular DNA mediated by the adaptor STING in dendritic cells. Nat Immunol, 2011, 12(10):959-965.
[35] Parvatiyar K, Zhang Z, Teles R M, et al. The helicase DDX41 recognizes the bacterial secondary messengers cyclic di-GMP and cyclic di-AMP to activate a type I interferon immune response. Nat Immunol, 2012, 13(12):1155-1161.
[36] Ferguson B J, Mansur D S, Peters N E, et al. DNA-PK is a DNA sensor for IRF-3-dependent innate immunity. Elife, 2012, 1:e00047-e00063.
[37] Zhang X, Brann T W, Zhou M, et al. Cutting edge: Ku70 is a novel cytosolic DNA sensor that induces type III rather than type I IFN. J Immunol, 2011, 186(8):4541-4545.
[38] Hopfner K P, Karcher A, Craig L, et al. Structural biochemistry and interaction architecture of the DNA double-strand break repair Mre11 nuclease and Rad50-ATPase. Cell, 2001, 105(4):473-485.
[39] Deng Y, Guo X, Ferguson D O, et al. Multiple roles for MRE11 at uncapped telomeres. Nature, 2009, 460(7257):914-918.
[40] Kondo T, Kobayashi J, Saitoh T, et al. DNA damage sensor MRE11 recognizes cytosolic double-stranded DNA and induces type I interferon by regulating STING trafficking. Proc Natl Acad Sci U S A, 2013, 110(8):2969-2974.
[41] Roth S, Rottach A, Lotz-Havla A S, et al. Rad50-CARD9 interactions link cytosolic DNA sensing to IL-1beta production. Nat Immunol, 2014, 15(6):538-545.
[42] Civril F, Deimling T, de Oliveira Mann C C, et al. Structural mechanism of cytosolic DNA sensing by cGAS. Nature, 2013, 498(7454):332-337.
[43] Zhang X, Wu J, Du F, et al. The cytosolic DNA sensor cGAS forms an oligomeric complex with DNA and undergoes switch-like conformational changes in the activation loop. Cell Rep, 2014, 6(3):421-430.
[44] Chin K H, Tu Z L, Su Y C, et al. Novel c-di-GMP recognition modes of the mouse innate immune adaptor protein STING. Acta Crystallogr D Biol Crystallogr, 2013, 69(Pt 3):352-366.
[45] Shang G, Zhu D, Li N, et al. Crystal structures of STING protein reveal basis for recognition of cyclic di-GMP. Nat Struct Mol Biol, 2012, 19(7):725-727.
[46] Ishikawa H, Ma Z, Barber G N. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature, 2009, 461(7265):788-792.
[47] Ishikawa H, Barber G N. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature, 2008, 455(7213):674-678.
[48] 陈艳玫,姚鑫. 转录因子Sox2的研究进展. 生命科学, 2004, 16(3):129-134. Chen Y M, Yao Z. Advances in the studies of transcription factor Sox2. Chin Bull Life Sci, 2004, 16(3):129-134.
[49] Xia P, Wang S, Ye B, et al. Sox2 functions as a sequence-specific DNA sensor in neutrophils to initiate innate immunity against microbial infection. Nat Immunol, 2015, 16(4):366-375.
[50] Yu Z, Chen T, Cao X. Neutrophil sensing of cytoplasmic, pathogenic DNA in a cGAS-STING-independent manner. Cell Mol Immunol.[2015-04-27].http://www.nature.com/cmi/journal/vaop/ncurrent/full/cmi201534a.htm.
[51] Wu J, Chen Z J. Innate immune sensing and signaling of cytosolic nucleic acids. Annu Rev Immunol, 2014, 32:461-488.
[52] Ran Y, Shu H B, Wang Y Y. MITA/STING: a central and multifaceted mediator in innate immune response. Cytokine Growth Factor Rev, 2014, 25(6):631-639.

[1] HE Xiao-bing, JIA Huai-jie, JING Zhi-zhong. Innate Immune Recognition of the Pathogenic Fungus by Toll-Like Receptors[J]. China Biotechnology, 2012, 32(12): 86-92.
[2] WANG Tao, DU Li, MA Qiong, CUI Yu-fang. Current Progress on the Signal Transduction Pathway of Innate Immunity in Caenorhabditis Elegans[J]. China Biotechnology, 2011, 31(7): 121-125.
[3] SUN Da-kang, AN Xin-ye, ZHOU Xiao-sheng, LI Meng, XUE Yan. Ectopic Expression of Trim22 Down-regulates Pro-inflammatory Cytokines Production in LPS-stimulated Macrophage-like Cells[J]. China Biotechnology, 2011, 31(12): 57-62.
[4] SUN Ying-jun, ZHANG Yan, WU Qiong, ZHENG Hai-xue, ZHANG Zhi-dong. The Progress of Study on Innate Immunity Led to the Design and Development of More Specific and Focused Adjuvants[J]. China Biotechnology, 2011, 31(03): 87-90.
[5] SHI Chun-Lin . Multiple Roles of Antimicrobial Peptides in Host Denfence[J]. China Biotechnology, 2008, 28(4): 82-86.