Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2016, Vol. 36 Issue (4): 110-115    DOI: 10.13523/j.cb.20160416
    
The Role of Phosphoinositide Phospholipase C in Expression Regulation of DREB2
LI Shuai, SHAN Hong-yu, DONG Xiao-yu, GUO Chang-hong, GUO Dong-lin
Harbin Normal University, College of Life Science and Technology, Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, Harbin 150025, China
Download: HTML   PDF(1181KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Environmental stresses have an unfavorable influence on the growth of plants. transcription factors DREB2 has an important regulation role on gene expression response to abiotic stress such as drought, high temperature, low temperatures. Phosphoinositide phospholipase C has dual regulate mechanism for DREB2 gene. Deep understanding the research progress and its applications in biological engineering of DREB2 and phosphoinositide phospholipase C, and the regulation mechanism of phosphoinositide phospholipase C on DREB2 gene expression could provide the basis for the use of phosphoinositide phospholipase C and DREB2 gene in plant stress tolerance improving.



Key wordsDREB2      Phosphoinositide phospholipase C      Stress tolerance     
Received: 24 December 2015      Published: 15 February 2016
ZTFLH:  Q812  
Cite this article:

LI Shuai, SHAN Hong-yu, DONG Xiao-yu, GUO Chang-hong, GUO Dong-lin. The Role of Phosphoinositide Phospholipase C in Expression Regulation of DREB2. China Biotechnology, 2016, 36(4): 110-115.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20160416     OR     https://manu60.magtech.com.cn/biotech/Y2016/V36/I4/110

[1] 高刚, 邓家彬, 苟学梅, 等. 14个赖草属植物DREB2基因的克隆与SNP分析. 植物研究, 2015, 35(1) : 47-51. Gao G, Deng J B, Gou X M, et al. Clone and SNP analysis of DREB2 gene in fourteen Leymus species. Bulletin of Botaanical Research, 2015, 35(1) : 47-51.
[2] Sakuma Y, Liu Q, Dubouzet J G, et al. Functional role of DREB and ERF transcription factors:regulating stress-responsive network in plants.Acta Physiologiae Plantarum, 2015, 37(9): 178.
[3] Liu Q, Kasuga M, Sakuma Y, et al. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought and low-temperature-responsive gene express ion, respectively, in Arabidopsis. The Plant Cell, 1998, 10(8): 1391-1406.
[4] Sakuma Y, Maruyama K, Osakabe Y, et al. Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought responsive gene expression. Plant Cell, 2006, 18(5): 1292-1309.
[5] Dubouzet J G, Sakuma Y, Ito Y, et al. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression.The Plant Journal, 2003, 33(4): 751-763.
[6] Qin F, Kakimoto M, Sakuma Y, et al. Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L. The Plant Journal, 2007, 50(1): 54-69.
[7] Chen J, Xia X, Yin W. Expression profiling and functional characterization of a DREB2-type gene from Populus euphratica. Biochemical and Biophysical Research Communications, 2009, 378(3): 483-487.
[8] Parinita A, Pradeep K A, Arvind J J, et al. Overexpression of PgDREB2A transcription factor enhances abiotic stress tolerance and activates downstream stress-responsive genes. Molecular Biology Reports, 2010, 37(2): 1125-1135.
[9] Bihani P, Char B, Bhargava S. Transgenic expression of sorghum DREB2 in rice improves tolerance and yield under water limitation. The Journal of Agricultural Science, 2011, 149(1): 95-101.
[10] Zhao K, Xinjie S, Huazhao Y, et al. Isolation and characterization of dehydration-responsive element-binding factor 2C (MsDREB2C) from Malus sieversii Roem. Plant & Cell Physiology, 2013, 54(9): 1415-1430.
[11] Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K. AP2/ERF family transcription factors in plant abiotic stress responses. Biochim Biophys Acta, 2012, 1819(2): 86-96.
[12] Kudo K, Oi T, Uno Y. Functional characterization and expression profiling of a DREB2-type gene from lettuce (Lactuca sativa L.). Plant Cell Tissue Organ Culture, 2014, 116(1): 97-109.
[13] Ayan S, Yasufumi K, Yuriko K. et al. VuDREB2A, a novel DREB2-type transcription factor in the drought-tolerant legume cowpea, mediates DRE-dependent expression of stress-responsive genes and confers enhanced drought resistance in transgenic Arabidopsis. Planta, 2014, 240(3): 645-664.
[14] Li X S, Daoyuan Z H, Haiyan L, et al. EsDREB2B, a novel truncated DREB2-type transcription factor in the desert legume Eremosparton songoricum, enhances tolerance to multiple abiotic stresses in yeast and transgenic tobacco. BMC Plant Biology, 2014, 14(1): 44.
[15] Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K. AP2/ERF family transcription factors in plant abiotic stress responses. Biochimica et Biophysica Acta, 2012, 1819(2): 86-96.
[16] Djafi N, Vergnolle C, Cantrel C, et al. The Arabidopsis DREB2 genetic pathway is constitutively repressed by basal phosphoinositide- dependent phospholipase C coupled to diacylglycerol kinase. Frontiers in Plant Science, 2013, 4: 1-14.
[17] Matsukura S, Mizoi J, Yoshida T, et al. Comprehensive analysis of rice DREB2-type genes that encode transcription factors involved in the expression of abiotic stress-responsive genes. Molecular Genetics and Genomics, 2010, 283(2): 185-196.
[18] Mizoi J, Ohori T, Kidokoro S, et al. GmDREB2A; 2, a canonical dehydration-responsive element-binding protein2-Type Transcription Factor in soybean, is post transnationally regulated and mediates dehydration-responsive element-dependent gene express. Plant Physiology, 2013, 161(1): 346-361.
[19] Gupta K, Agarwal P K, Reddy M K, et al. SbDREB2A, an A-2 type DREB transcription factor from extreme halophte Salicornia brachiata confers abiotic stress tolerace in Escherichia coli. Plant Cell Reports, 2010, 29(10): 1131-1137.
[20] Sakuma Y, Maruyama K, Qin F, et al. Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stressresponsive gene expression. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(49): 18822-18827.
[21] Fuminori K, Machiko I, Shigeo T. Transcriptional activation of Cor/Lea genes and increase in abiotic stress tolerance through expression of a wheat DREB2 homolog in transgenic tobacco. Transgenic Research, 2008, 17(5): 755-767.
[22] Geliang W, Stephen R, Xuemin W. Plant phospholipases: An overview. Lipases and Phospholipases, 2012, 861: 123-137.
[23] 孙建, 裴慧娟, 路小铎, 等. 拟南芥非特异性磷脂酶C4基因表达模式的研究. 生物技术通报, 2008, (6): 83-96. Sun J, Pei H J, Lu X D, et al. Expression pattern of Arabidopsis nonspecific phospholipase C4 gene. Biotechnology Bulletin, 2008, (6): 83-96.
[24] Jill S P, Brian Q P. Inositol polyphosphates and kinases. Lipid Signaling in Plants, 2009, 16: 161-174.
[25] Pokotylo I, Kolesnikov Y, Kravets V, et al. Plant phosphoinositide-dependent phospholipases C: variations around a canonical theme. Biochimie, 2014, 96: 144-157.
[26] Berridge M J. Inositol trisphosphate and calicum signalling. Nature, 1993, 361(6410): 315-325.
[27] Ahmed A H, Harold J G, Wladimir I L, et al. Defense activation triggers differential expression of phospholipase-C (PLC) genes and elevated temperature induces phosphatidic acid (PA) accumulation in tomato. Plant Signaling & Behavior, 2012, 7(9): 1073-1078.
[28] Arisz S A, Testerink C, Munnik T. Plant PA signaling via diacylglycerol kinase. Biochimica et Biophysica Acta, 2009, 1791(9): 869-875.
[29] Eric R, Nabila D, Alain Z. The phosphoinositide dependent-phospholipase C pathway differentially controls the basal expression of DREB1 and DREB2 genes. Plant Signaling & Behavior, 2013, 9(1): e26895-e26893.
[30] Reggiani R, laoreti P. Evidence for the involvement of phospholipase C in the anaerobic signal transduction. Plant and Cell Physiology, 2000, 41(12): 1392-1396.
[31] Apone F, Alyeshmerni N, Wiens K, et al. The G-protein- coupled receptor GCR1 regulates DNA synthesis through activation of phosphatidylinositol-specific phospholipase C. Plant Physiology, 2003, 133(2): 571-579.
[32] 马力耕,徐小冬,崔素娟,等. 肌醇磷脂信号途径参与胞外钙调素启动花粉萌发和花粉管伸长. 植物生理学报, 1998, 24(2): 196-200. Ma L G, Xu X D, Cui S J, et al. The involvement of phosphoinosiitde signaling pathway in the iultiatory effects of extracellular calmodulin on pollen germination and tube groth. Acta Phytophysiologica Sinica, 1998, 24(2): 196-200.
[33] Fujita Y, Fujita M, Shinozaki K, et al. ABA-mediated transcriptional regulation in response to osmotic stress in plants. Journal of Plant Research, 2011, 124(4): 509-525.
[34] Staxen I, Pical C, Montgomery L T, et al. Abscisic acid induces oscillations in guard-cell cytosolic free calcium that involve phosphoinositide-specific phospholipase C. Proceedings of the National Academy of Sciences, 1999, 96(4): 177-1784.
[35] Munnik T, Vermeer J E. Osmotic stress-induced phosphoinositide and inositol phosphate signalling in plants. Plant Cell Environ, 2010, 33(4): 655-669.
[36] Ruelland E, Zachowski A. How plants sense temperature. Environmental and Experimental Botany, 2010, 69(3): 225-232.
[37] Hong T L, Wei D H, Qiu H P, et al. Contributions of PIP2-specific-phospholipase C and free salicylic acid to heat acclimation-induced thermotolerance in pea leaves. Journal of Plant Physiology, 2006, 163(4):405-416.
[38] Hong T L, Gao F, Shu J C, et al. Primary evidence for involvement of IP3 in heat-shock signal transduction in Arabidopsis. Cell Research, 2006, 16(4): 394-400.
[39] Ruelland E, Cantrel C, Gawer M, et al. Activation of phospholipases C and D is an early response to a cold exposure in Arabidopsis suspension cells. Plant Physiology, 2002, 130(2): 999-1007.
[40] Marie Noëlle V, Catherine C, Chantal V, et al. Desaturase mutants reveal that membrane rigidification acts as a cold perception mechanism upstream of the diacylglycerol kinase pathway in Arabidopsis cells. FEBS Letters, 2006, 580(17):4218-4223.
[41] Boss W F, Sederoff H W, Ju I Y, et al. Basal signaling regulates plant growth and development. Plant Physiology, 2010, 154(2): 439-443.
[42] Ruelland E, Dja N, Zachowski A. The phosphoinositide dependent-phospholipase C pathway differentially. Plant Signaling & Behavior, 2013, 9:1.
[43] Eric R, Igor P, Nabila D, et al. Salicylic acid modulates levels of phosphoinositide dependent-phospholipase C substrates and products to remodel the Arabidopsis suspension cell transcriptome. Frontiers in Plant Science, 2014, 5: 1-19.
[44] Wilsher N E, Court W J, Ruddle R, et al. The phosphoinositide-specific phospholipase C inhibitor U73122 (1-6-(17β-3-Methoxyestra-1 3, 5-trien-17-yl) amino)hexyl)-1H-pyrrole-2, 5-dione) spontaneously forms conjugates with common components of cell culture medium. Drug Metabolism and Disposition, 2007, 35(7): 1017-1022.
[45] Dominique R, Lydie H, Elise D, et al. Acyl chains of phospholipase D transphosphatidylation products in Arabidopsis cells: a study using multiple reaction monitoring mass spectrometry. PLos One, 2012, 7(7): e41985.
[46] Baker S S, Wilhelm K S, Thomashow M F. The 5’-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought- and ABA- regulated gene expression. Plant Molecular Biology, 1994, 24(5): 701-713.

[1] YAO Chang-hong, WU Pei-chun, CAO Xu-peng, LIU Jiao, JIANG Jun-peng, XUE Song. Comparative Characterization of Two Arthrospira Strains Isolated from Full-scale Raceway Pond[J]. China Biotechnology, 2017, 37(5): 28-37.