Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2016, Vol. 36 Issue (4): 69-77    DOI: 10.13523/j.cb.20160411
    
Transcriptome Analysis of Cadmium Exposed Jatropha curcas
SU Zhi-zhe, WANG Xue-hua, YANG Hua, SUN Huan, WEI Wei
School of Life Sciences and Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Sichuan University, Chengdu 610064, China
Download: HTML   PDF(1255KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Jatropha curcas, grown in many harsh environment, has been widely regarded as an excellent source of renewable biofuels, but their molecular regulation mechanism in response to cadmium (Cd) stress is not yet clear. Analyzing whole expression pattern would be very important to effectively screen the key regulation genes, to reveal molecular regulatory network of Cd stress response as well as to promote molecular breeding. Illumina sequencing technology has been applied in leaf of Cd treated Jatropha curcas (100μmol/L) and control plants(CK), 50 448 unigenes obtained from the two libraries after de novo assembly. 2 551 differentially expressed genes (DEGs) found between the two libraries, 539 up-regulated, 2 012 down-regulated. Large amounts of annotation information suggested that Cd stress in J. curcas caused change of genes involved in photosynthesis, carbon metabolism, plant hormone signal transduction and plant-pathogen interaction. DAVID annotation indicated Cd stress significantly affect the homeostasis of sodium and iron in J. curcas. Transcription factor analysis demonstrated WRKY, ZIP play vital role in Cd exposed J. curcas. QRT-PCR analysis of 5 randomly selected DEGs showed that the expression patterns were highly accordant with the results of RNA-seq. This useful information for the molecular mechanisms of Cd exposed J. curcas could be practical applied in genetic engineering and phytoremediation.



Key wordsCadmium stress      Phytoremediation      Jatropha curcas      Transcriptome     
Received: 27 October 2015      Published: 14 December 2015
ZTFLH:  Q789  
Cite this article:

SU Zhi-zhe, WANG Xue-hua, YANG Hua, SUN Huan, WEI Wei. Transcriptome Analysis of Cadmium Exposed Jatropha curcas. China Biotechnology, 2016, 36(4): 69-77.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20160411     OR     https://manu60.magtech.com.cn/biotech/Y2016/V36/I4/69

[1] Satarug S B, Urbenjapol S. A global perspective on cadmium pollution and toxieity in non-occupationally exposed population. Toxicol Lett, 2003,137:65-83.
[2] 陈飞. 大麦镐吸收与运转机制的研究. 杭州:浙江大学,农业与生物技术学院, 2009. Chen F.Physiological and molecular mechanism of cadmium uptake and translocation in barley. Hangzhou: Zhejiang University, College of Agronomy and Biotechnology, 2009.
[3] 刘威,束文圣,蓝崇钰,等. 宝山堇菜(Viola baoshanensis)-一种新的镉超富集植物. 科学通报, 2003,48(19):2046-2049. Liu W,Shu W S,Lan C Y,et al.Viola baoshanensis—a new plant as cadmium hyperaccumulator.Chinese Science Bulletin,2003,48(19):2046-2049.
[4] 李继光,李廷强,朱恩,等. 氮对超积累植物东南景天生长和镉积累的影响. 水土保持学报, 2007,21(1):54-58. Li J G,Li T Q,Zhu E,et al. Effects of nitrogen fertilizer on growth and cadmium accumulation in hyperaccumulator of sedum alfredii hance.Journal of Soil and Water Conservation,2007,21(1):54-58.
[5] 韩璐,魏嵬,官子楸,等. Zn/Cd超富集植物天蓝遏蓝菜(Thlaapi caeruescens)中TcCalVI2基因的克隆及在酵母中的重金属耐受性分析. 中国科学院研究生院学报, 2007,24(4):465-472. Han L,Wei W,Guan Z Q, et al. A novel CAM gene from heavy metals hyperaccumulator(Thlaspi caerulescens)L.and functional analysis in yeast. Journal of the Graduate School of the Chinese Academy of Sciences,2007,24(4):465-472.
[6] 李清飞,仇荣亮. 麻疯树对镉胁迫的生理耐性及富集特征研究. 农业环境科学学报, 2012,31(1):42-47. Li Q F,Qiu R L.Cadmium physiological tolerance and accumulation characteristics of Jatropha curcas L.. Journal of Agro-Environment Science,2012,31(1):42-47.
[7] Grabherr M G, Yassour M. Full length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology, 2011,29:644-652.
[8] Leng N D, Thomson J A. EBSeq: An empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics, 2013,29(8):1035-1043.
[9] Huang D W. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc, 2009,4(1):44-57.
[10] Weber M, Trampczynska A, Clemens S, et al.Comparative transcriptome analysis of toxic metal responses in Arabidopsis thaliana and the Cd(2+)-hypertolerant facultative metallophyte Arabidopsis halleri. Plant Cell and Environment, 2006,29:950-963.
[11] Romero-Puertas M C, Corpas F J, Rodríguez-Serrano, et al. Differential expression and regulation of antioxidative enzymes by Cd in pea plants. Journal of Plant Physiology, 2007,164:1346-1357.
[12] Tamas L, Dudikova J, Durcekova K, et al. Alterations of the gene expression, lipid peroxidation, proline and thiol content along the barley root exposed to cadmium. Journal of Plant Physiology, 2008,165:1193-1203.
[13] Wang Y, Gao C, Liang Y, et al. A novel bZIP gene from Tamarix hispida mediates physiological responses to salt stress in tobacco plants. J Plant Physiol, 2010,167:222-230.
[14] Chmielowska-Bak J, Lefèvre I, Lutts S, et al. Short term signaling responses in roots of young soybean seedlings exposed to cadmium stress. J Plant Physiol, 2013,170:1585-1594.
[15] Wei W, Zhang Y, Han L, et al. A novel WRKY transcriptionalfactor from Thlaspi caerulescens negatively regulates the osmotic stress tolerance of transgenic tobacco. Plant Cell Reports, 2008,27:795-803.
[16] Kaya H B, Cetin O, Kaya H,et al.SNP discovery by Illuminabased transcriptome sequencing of the Olive and the genetic characterization of Turkish Olive genotypes revealed by AFLP, SSR and SNP Markers. PLoS ONE, 2013,8(9): e73674. doi:10.1371/journal.pone.0073674.
[17] Steven A, Yates M, Igor Chernukin, et al. De novo assembly of red clover transcriptome based on RNA-Seq data provides insight into drought response, gene discovery and marker identification. BMC Genomics, 2014,15:253.
[18] Yan L,Gu Y H,Tao X,et al. Scanning of transposable elements and analyzing expression of transposase genes of Sweet Potato [Ipomoea batatas]. PLoS ONE, 2014,9(3):e90895. doi:10.1371/journal.pone.0090895.
[19] Perfus Barbeoch L, Forestier C. Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status. Plant J, 2002,32:539-548.
[20] Yuan L Y,Yang S G,Liu X B,et al, Molecular characterization of a rice metal tolerance protein, OsMTP1. Plant Cell Rep, 2012,31:67-79.
[21] Bkgaard L, Persson D P. Acombined zinc/cadmium sensor and zinc/cadmium export regulator in a heavy metal pump. J Biol Chem, 2010,285:31243-31252.
[22] Tiwari M, Sharma D, Dwivedi S, et al. Expression in Arabidopsis and cellular localization reveal involvement of rice NRAMP, OsNRAMP1, in arsenic transport and tolerance. Plant Cell Environ, 2014,37:140-152.
[23] Sekhar K,Priyanka B,Reddy V D,et al,Metallothionein 1(CcMT1)of pigeonpea(Cajanus cajan,L.)confers enhanced tolerance to copper and cadmium in Escherichia coli and Arabidopsis thaliana.Environ Exp Bot,2011,doi:10.1016/j.envexpbot.2011.02.017.
[24] Shukla D, Dwivedi S, Tripathi R D,et al. Expression of Ceratophyllum demersum phytochelatin synthase, CdPCS1, in Escherichia coli and Arabidopsis enhances heavy metal(loid)s accumulation. Protoplasma, 2013,250:1263-1272.
[25] Takahashi R B K, Ishimaru Y, Nishizawa N K, et al. The role of heavy-metal ATPases, HMAs, in zinc and cadmium transport in rice. Plant Signal Behav, 2012,7:1799-1801.

[1] HE Li-heng,ZHANG Yi,ZHANG Jie,REN Yu-chao,XIE Hong-e,TANG Rui-min,JIA Xiao-yun,WU Zong-xin. Construction of Gene Co-expression Network and Identification of Hub Genes Related to Anthocyanin Biosynthesis Based on RNA-seq and WGCNA in Sweetpotato[J]. China Biotechnology, 2021, 41(9): 27-36.
[2] HE Guan-rong,HE Bi-zhu,WU Sha-sha,SHI Jing-shan,CHEN Ji-shuang,LAN Si-ren. Establishment of an Efficient Regeneration System in Goodyera foliosa and Comprehensive Analysis of Functionally Regulated Genes Involved in Developmental Regulatory Pathways Based on Transcriptome Analysis[J]. China Biotechnology, 2018, 38(12): 57-64.
[3] ZHOU Qian, ZHAO Hui-xin, LI Ping-ping, ZENG Wei-jun, LI Yan-hong, GE Feng-wei, ZHAO Jun-jie, ZHAO He-ping. De novo Characterization of the Seed Transcriptome of Lepidium apetalum Willd[J]. China Biotechnology, 2016, 36(1): 38-46.
[4] AO Yan, MA Lv-yi, HAN Shu-wen, YANG Xiao-hui. Transcriptome Analysis for Xanthoceras sorbifolia Bunge Based on High-throughput Sequencing Technology[J]. China Biotechnology, 2015, 35(7): 22-29.
[5] LI Zhen, LIU Zhao-yu, XU Dan, CHEN Ting, MENG Zan, TANG Yong, PENG Yan. Astrocyte Promotes Oligodendrocyte Precursor Cell Proliferating through Connexion CX47[J]. China Biotechnology, 2015, 35(12): 21-29.
[6] SHAO Zi-jing, JIANG Nan, YAN Hua-li, ZHAN Cheng, XU Ying, CHEN Fang. The Soluble Prokaryotic Expressed Ribosome-inactivating Protein Curcin2 with Anti-fungal Activity from Jatropha curcas L.[J]. China Biotechnology, 2013, 33(7): 43-49.
[7] ZHANG Nan, SUN Gui-ling, DAI Jun-gui, YANG Yan-fang, LIU Hong-wei, QIU De-you. Sequencing and Analysis of the Transcriptome of Ginkgo biloba L. Cells[J]. China Biotechnology, 2013, 33(5): 112-119.
[8] LV Chang-yong, CHEN Chao-yin, GE Feng, LIU Di-qiu, KONG Xiang-jun. The New Development of the Research Method for Molecular Microbial Ecology[J]. China Biotechnology, 2012, 32(08): 111-118.
[9] WANG Xing-chun, YANG Zhi-rong, WANG Min, LI Wei, LI Sheng-cai. High-throughput Sequencing Technology and Its Application[J]. China Biotechnology, 2012, 32(01): 109-114.
[10] LIU Xin-xing, CHEN Chao. De Novo Assembly of Allotetraploid Arabidopsis suecica Transcriptome using Short Reads for Gene Discovery and Marker Identification[J]. China Biotechnology, 2011, 31(7): 45-53.
[11] . Advances in Phytoremediation and Genetic Modification of Plants for Enviromental Clean-up[J]. China Biotechnology, 2008, 28(4): 103-108.