Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2011, Vol. 31 Issue (7): 126-132    DOI:
    
Advances on Factors Influencing Induction of Agrobacterium tumefaciens Virulence Genes
ZOU Zhi
Key Laboratory of Rubber Biology, Ministry of Agriculture/Rubber Research Institute (RRI, Chinese Academy of Tropical Agricultural Sciences (CATAS, Danzhou 571737, China
Download: HTML   PDF(553KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

With advantages of easy-to-operate, low-cost, low copies and preferential integration of defined T-DNA into transcriptionally active regions of chromosomes without vector DNAs, Agrobacterium is employed for genetic modification of plants routinely. However, until recently, still there are a great many species recalcitrant to Agrobacterium-mediated transformation. Data suggest that the infection capability is designed by virulence (vir) genes of Ti plasmid outside of A. tumefaciens genome. Among all vir genes, virA and virG express constitutively, while other vir genes need phenolic compounds for induction. Besides, carbohydrates can enhance vir induction by phenolic compounds, while low phosphate and acidic pH environmental conditions may also increase induced expression of vir genes. In order to better utilize Agrobacterium and improve its efficiency for applications in research and biotechnology, molecular mechanisms for vir induction by factors such as phenolic compounds, carbohydrates, low phosphate, acidic pH conditions and incubation temperature are discussed.



Key wordsAgrobacterium tumefaciens      Virulence genes      Induced expression     
Received: 07 December 2010      Published: 25 July 2011
ZTFLH:  Q819  
Cite this article:

ZOU Zhi. Advances on Factors Influencing Induction of Agrobacterium tumefaciens Virulence Genes. China Biotechnology, 2011, 31(7): 126-132.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2011/V31/I7/126


[1] Gelvin S B. Agrobacterium-mediated plant transformation: the biology behind the "gene-jockeying" tool. Microbiol Mol Biol Rev, 2003, 67(1): 16-37.

[2] Gelvin S B. Plant proteins involved in Agrobacterium-mediated genetic transformation. Annu Rev Phytopathol, 2010, 48: 45-68.

[3] Pitzschke A, Hirt H. New insights into an old story: Agrobacterium-induced tumour formation in plants by plant transformation. EMBO J, 2010, 29(6): 1021-1032.

[4] Lacroix B, Tzfira T, Vainstein A, et al. A case of promiscuity: Agrobacteriums endless hunt for new partners. Trends Genet, 2006, 22(1): 29-7.

[5] Winans S C. Two-way chemical signaling in Agrobacterium-plant interactions. Microbiol Rev, 1992, 56(1): 12-31.

[6] Shimoda N, Toyoda-Yamamoto A, Nagamine J, et al. Control of expression of Agrobacterium vir genes by synergistic actions of phenolic signal molecules and monosaccharides. Proc Natl Acad Sci U S A, 1990, 87: 6684-6688.

[7] Shimoda N, Toyoda-Yamamoto A, Aoki S, et al. Genetic evidence for an interaction between the VirA sensor protein and the ChvE sugar-binding protein of Agrobacterium. J Biol Chem, 1993, 268(35): 26552-26558.

[8] McCullen C A, Binns A N. Agrobacterium tumefaciens and plant cell interactions and activities required for interkingdom macromolecular transfer. Annu Rev Cell Dev Biol, 2006, 22: 101-127.

[9] 邓艺,曾炳山, 赵思东, 等. 乙酰丁香酮在农杆菌介导的遗传转化中的作用机制及应用. 安徽农业科学, 2010, 38(5): 2229-2232. Deng Y, Zeng B S, Zhao S D, et al. Anhui Agri Bull, 2010, 38(5): 2229-2232.

[10] Brencic A, Winans S C. Detection of and response to signals involved in host-microbe interactions by plant-associated bacteria. Microbiol Mol Biol Rev, 2005, 69(1): 155-194.

[11] Braun A. Thermal studies on the factors responsible for tumour induction in crown gall. Am J Bot, 1947, 34: 234-240.

[12] Stachel S E, Nester E W. The genetic and transcriptional organization of the vir region of the A6 Ti plasmid of Agrobacterium tumefaciens. EMBO J, 1986, 5(7): 1445-1454.

[13] Zhu J, Oger P M, Schrammeijer B, et al. The bases of crown gall tumorigenesis. J Bacteriol, 2000, 182(14): 3885-3895.

[14] Stachel S E, Zambryski P C. virA and virG control the plant-induced activation of the T-DNA transfer process of A. tumefaciens. Cell, 1986, 46(3): 325-333.

[15] Toyoda-yamamoto A, Shimoda N, Machida Y. Genetic analysis of the signal-sensing region of the histidine protein kinase VirA of Agrobacterium tumefaciens. Mol Gen Genet, 2000, 263(6): 939-947.

[16] Chang C H, Winans S C. Functional roles assigned to the periplasmic, linker, and receiver domains of the Agrobacterium tumefaciens VirA protein. J Bacteriol, 1992, 174(21): 7033-7039.

[17] Stachel S E, Nester E W, Zambryski P C. A plant cell factor induces Agrobacterium tumefaciens vir gene expression. Proc Natl Acad Sci U S A, 1986, 83: 379-383.

[18] Chang C H, Winans S C. Resection and mutagenesis of the acid pH-inducible P2 promoter of the Agrobacterium tumefaciens virG gene. J Bacteriol, 1996, 178(15): 4717-4720.

[19] Gao R, Lynn D G. Environmental pH sensing: resolving the VirA/VirG two-component system inputs for Agrobacterium pathogenesis. J Bacteriol, 2005, 187(6): 2182-2189.

[20] Wise A A, Voinov L, Binns A N. Intersubunit complementation of sugar signal transduction inVirA heterodimers and posttranslational regulation ofVirA activity in Agrobacterium tumefaciens. J Bacteriol, 2005, 187: 213-223.

[21] Mukhopadhyay A, GaoR, Lynn D G. Integrating input from multiple signals: the VirA/VirG two-component system of Agrobacterium tumefaciens. Chembiochem, 2004, 5(11): 1535-1542.

[22] Ankenbauer R G, Nester E W. Sugar-mediated induction of Agrobacterium tumefaciens virulence genes: structural specificity and activities of monosaccharides. J Bacteriol, 1990, 172(11): 6442-6446.

[23] Stachel S E, Messens E, Van Montagu M, et al. Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature, 1985, 318: 624-629.

[24] Dixon R A, Achnine L, Kota P, et al. The phenylpropanoid pathway and plant defense—a genomics perspective. Mol Plant Pathol, 2002, 3: 371-390.

[25] Palmer A G, Gao R, Maresh J, et al. Chemical biology of multi-host/pathogen interactions: chemical perception and metabolic complementation. Annu Rev Phytopathol, 2004, 42: 439-464.

[26] Joubert P, Beaupére D, Leliévre P, et al. Effects of phenolic compounds on Agrobacterium vir genes and gene transfer induction—a plausible molecular mechanism of pheno binding protein activation. Plant Sci, 2002, 162: 733-743.

[27] Turk S C, van Lange R P, Regensburg-Tuink T J, et al. Localization of the VirA domain involved in acetosyringone-mediated vir gene induction in Agrobacterium tumefaciens. Plant Mol Biol, 1994, 25(5): 899-907.

[28] Campbell A M, Tok J B, Zhang J, et al. Xenognosin sensing in virulence: is there a phenol receptor in Agrobacterium tumefaciens? Chem Biol, 2000, 7(1): 65-76.

[29] Peng W T, Lee Y W, Nester E W. The phenolic recognition profiles of the Agrobacterium tumefaciens VirA protein are broadened by a high level of the sugar binding protein ChvE. J Bacteriol, 1998, 180(21): 5632-5638.

[30] Cangelosi G A, Ankenbauer R G, Nester E W. Sugars induce the Agrobacterium virulence genes through a periplasmic binding protein and a transmembrane signal protein. Proc Natl Acad Sci U S A, 1990, 87: 6708-6712.

[31] He F, Nair G R, Soto C S, et al. Molecular basis of ChvE function in sugar binding, sugar utilization, and virulence in Agrobacterium tumefaciens. J Bacteriol, 2009, 191(18): 5802-5813.

[32] Doty S L, Chang M, Nester E W. The chromosomal virulence gene, chvE, of Agrobacterium tumefaciens is regulated by a LysR family member. J Bacteriol, 1993, 175(24): 7880-7886.

[33] Doty S L, Yu M C, Lundin J I, et al. Mutational analysis of the input domain of the VirA protein of Agrobacterium tumefaciens. J Bacteriol, 1996, 178(4): 961-970.

[34] Yuan Z C, Liu P, Saenkham P, et al. Transcriptome profiling and functional analysis of Agrobacterium tumefaciens reveals a general conserved response to acidic conditions (pH 5.5) and a complex acid-mediated signaling involved in Agrobacterium-plant interactions. J Bacteriol, 2008, 190: 494-507.

[35] Bearson S, Bearson B, Foster J W. Acid stress responses in enterobacteria. FEMS Microbiol Lett, 1997, 147(2): 173-180.

[36] Li L, Jia Y, Hou Q, et al. A global pH sensor: Agrobacterium sensor protein ChvG regulates acid-inducibile genes on its two chromosomes and Ti plasmid. Proc Natl Acad Sci U S A, 2002, 99(19): 12369-12374.

[37] Winans S C. Transcriptional induction of an Agrobacterium regulatory gene at tandem promoters by plant-released phenolic compounds, phosphate starvation, and acidic growth media. J Bacteriol, 1990, 172(5): 2433-2438.

[38] Chen C Y, Winans S C. Controlled expression of the transcriptional activator gene virG in Agrobacterium tumefaciens by using the Escherichia coli lac promoter. J Bacteriol, 1991, 173(3): 1139-1144.

[39] Charles T C, Nester E W. A chromosomally encoded two-component sensory transduction system is required for virulence of Agrobacterium tumefaciens. J Bacteriol, 1993, 175(20): 6614-6625.

[40] Mantis N J, Winans S C. The chromosomal response regulatory gene chvI of Agrobacterium tumefaciens complements an Escherichia coli phoB mutation and is required for virulence. J Bacteriol, 1993, 175(20): 6626-6636.

[41] Cangelosi G A, Best E A, Martinetti G, et al. Genetic analysis of Agrobacterium. Methods Enzymol, 1991, 204: 384-397.

[42] Chang C H, Zhu J, Winans S C. Pleiotropic phenotypes caused by genetic ablation of the receiver module of the Agrobacterium tumefaciens VirA protein. J Bacteriol, 1996, 178(15): 4710-4716.

[43] Melchers L S, Regensburg-Tunk TJ, Bourret RB, et al. Membrane topology and functional analysis of the sensory protein VirA of Agrobacterium tumefaciens. EMBO J, 1989, 8(7): 1919-1925.

[44] Fullner K J, Nester E W. Temperature affects the T-DNA transfer machinery of Agrobacterium tumefaciens. J Bacteriol, 1996, 178(6): 1498-1504.

[45] Fullner K J, Lara J C, Nester E W. Pilus assembly by Agrobacterium T-DNA transfer genes. Science, 1996, 273(5278): 1107-1109.

[46] Dillen W, De Clercq J, Kapila J, et al. The effect of temperature on Agrobacterium tumefaciens-mediated gene transfer to plants. Plant J, 1997, 12: 1459-1463.

[47] Alt-Mrbe J, Neddermann P, von Lintig J, et al. Temperature-sensitive step in Ti plasmid vir-region induction and correlation with cytokinin secretion by Agrobacteria. Mol Gen Genet, 1988, 213: 1-8.

[48] Alt-Mrbe J, Kühlmann H, Schrder J. Differences in induction of Ti plasmid virulence genes virG and virD, and continued control of virD expression by four external factors. Mol Plant-Microbe Interact, 1989, 2(6): 301-308.

[49] Turk S C, Melchers L S, den Dulk-Ras H, et al. Environmental conditions differentially affect vir gene induction in different Agrobacterium strains. Role of the VirA sensor protein. Plant Mol Biol, 1991, 16(6): 1051-1059.

[50] Jin S, Song Y N, Deng W Y, et al. The regulatory VirA protein of Agrobacterium tumefaciens does not function at elevated temperatures. J Bacteriol, 1993, 175(21): 6830-6835.

[51] Banta L M, Bohne J, Lovejoy S D, et al. Stability of the Agrobacterium tumefaciens VirB10 protein is modulated by growth temperature and periplasmic osmoadaption. J Bacteriol, 1998, 180(24): 6597-6606.

[52] Lai E M, Chesnokova O, Banta L M, et al. Genetic and environmental factors affecting T-pilin export and T-pilus biogenesis in relation to flagellation of Agrobacterium tumefaciens. J Bacteriol, 2000, 182(13): 3705-3716.

[53] Baron C, Domke N, Beinhofer M, et al. Elevated temperature differentially affects virulence, VirB protein accumulation, and T-pilus formation in different Agrobacterium tumefaciens and Agrobacterium vitis strains. J Bacteriol, 2001, 183(23): 6852-6861.

[54] Jin S, Song Y, Pan S Q, et al. Characterization of a virG mutation that confers constitutive virulence gene expression in Agrobacterium. Mol Microbiol, 1993, 7(4): 555-562.

[55] Wise A A, Fang F, Lin Y H, et al. The receiver domain of hybrid histidine kinase VirA: an enhancing factor for vir gene expression in Agrobacterium tumefaciens. J Bacteriol, 2010, 192(6): 1534-1542.

[56] 邹智, 吴刚, 武玉花, 等. 植物源内含子对GUS表达模式的影响. 生物技术通报, 2008, 197(6): 78-82. Zou Z, Wu G, Wu Y H, et al. Biotech Bull, 2008, 197(6): 78-82.

[1] ZHOU Yu-cong, XIE Qiu-jin, SONG Kai, YANG Zhao-hui, CHEN Jie, LI Ya-qian. Optimal Agrobacterium tumefaciens-Mediated Transformation Technology Applied in Gene Knockout for Trichoderma atroviride[J]. China Biotechnology, 2015, 35(12): 58-64.
[2] SU Yan-nan, XUE Zheng-lian, CHEN Tao, MA Qi-ya. The Optimized Phospholipase A1 Gene Expression of Serratia marcescens PL-06 in E. coli[J]. China Biotechnology, 2013, 33(7): 36-42.
[3] ZHU Cai-hong, LI Shui-gen, QI Li-wang, HAN Su-ying. Agrobacterium tumefaciens-mediated Transformation of Larix leptolepis Embryogenic Tissue[J]. China Biotechnology, 2013, 33(5): 75-80.
[4] LI Shu-jie, LI Jin-wen, ZHANG Zheng-ying. Transformation and Identification of pta Gene into Wheat Cultivar Longchun22 Mediated by Agrobacterium tumefaciens[J]. China Biotechnology, 2012, 32(02): 50-56.
[5] LI Ming, LIU Meng, HUANG Yun-yan, ZHOU Li-ying, SUN Xin, LU Fu-ping. Establishment and Optimization of Agrobacterium tumefaciens-mediated Transformation System of Aspergillus niger[J]. China Biotechnology, 2012, 32(01): 56-63.
[6] DENG Yong-Kang-1, TUN Min-Lu-2, LIU Cheng-Bang-1, DU Lin-Fang-1, WU Li-Li-1, LI Man-1, MENG Yan-Fa-1. Expression of recombinant uricase in E.coli JM109(DE3)Induced by lactose[J]. China Biotechnology, 2009, 29(07): 74-79.