Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2011, Vol. 31 Issue (7): 133-139    DOI:
    
Progress on the Study of Legume Lectins
YIN Xiao-li, LI Ting-ting, LIU Dong-liang, WANG Yan, SUN Su-rong
College of Life Science and Technology, Xinjiang University, Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi 830046, China
Download: HTML   PDF(565KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Legume lectins, the largest lectin family in plants, were the most investigated ones in terms of their biological properties. Most legume lectins were assembled into dimers and tetramers under normal physiological conditions. The oligomer molecules provide a very high sugar specificity and macromolecular stability to the legume lectins. Besides the function of plant storage, legume lectins are identified by glycoprotein, glycopeptide and carbohydrate of biological membrane, and acted as symbiosis neurogen between plant and surrounding microorganisms.The research progresses of the legume lectins with respect to structure and function, as well as applications in biology, agriculture and medicine are reviewed.



Key wordsLegume      Carbohydrate-binding protein     
Received: 29 December 2010      Published: 25 July 2011
ZTFLH:  Q949.98  
Cite this article:

YIN Xiao-li, LI Ting-ting, LIU Dong-liang, WANG Yan, SUN Su-rong. Progress on the Study of Legume Lectins. China Biotechnology, 2011, 31(7): 133-139.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2011/V31/I7/133


[1] Teixeira-Sá D M, Reicher F, Braga R C, et al. Isolation of a lectin and a galactoxyloglucan from Mucuna sloanei seeds. Phytochemistry, 2009, 70(17-18): 1965-1972.

[2] Sharon N, Lis H. Legume lectins-a large family of homologous proteins. FASEB J, 1990, 14(3): 198-208.

[3] Delatorre P, Rocha B A, Souza E P, et al. Structure of a lectin from Canavalia gladiata seeds: new structural insights for old molecules. BMC Structural Biology, 2007, 52(7): 1-9.

[4] Herman E M, Hankins C N, Shannon LM. Bark and leaf lectins of Sophora japonica are sequestered in protein-storage vacuoles. Plant Physiol, 1988, 86(4): 1027-1031.

[5] Lam S K, Ng T B. Isolation and characterization of a French bean hemagglutinin with antitumor, antifungal, and anti-HIV-1 reverse transcriptase activities and an exceptionally high yield. Phytomedicine, 2010, 17(6): 457-462.

[6] Rougé P, Culerrier R, Granier C, et al. Characterization of IgE-binding epitopes of peanut (Arachis hypogaea) PNA lectin allergen cross-reacting with other structurally related legume lectins. Molecular Immunology, 2010, 47(14): 2359-2366.

[7] Murdock L L, Shade R E. Lectins and protease inhibitors as plant defenses against insects. J Agric Food Chem, 2002, 50(22): 6605-6611.

[8] Sumner J B, Howell S F. Identification of Hemagglutinin of Jack Bean with Concanavalin A. J Bacteriol, 1936, 32(2): 227-237.

[9] Chatterjee A, Mandal D K. Quaternary association and reactivation of dimeric concanavalin A. Int J Biol Macromol, 2005, 35(1-2): 103-109.

[10] Prabu M M, Suguna K, Vijayan M. Variability in quaternary association of proteins with the same tertiary fold: A case study and rationalization involving legume lectins. Proteins Struct Funct Genet, 1999, 35(1): 58-69.

[11] Srinivas V R, Bhanuprakash Reddy G, Nisar Ahmad, et al. Legume lectin family, the 'natural mutants of the quaternary state’, provide insights into the relationship between protein stability and oligomerization. Biochimica et Biophysica Acta, 2001, 1527(3): 102-111.

[12] Sinha S, Mitra N, Kumar G, et al. Unfolding Studies on Soybean Agglutinin and Concanavalin A Tetramers: A Comparative Account. Biophys J, 2005, 88(2): 1300-1310.

[13] Hardman K D, Ainsworth C F. Structure of Concanavalin A at 2.4-A resolution. Biochemistry, 1972, 11(26): 4910-4919.

[14] Olsen L R, Dessen A, Gupta D, et al. X-ray crystallographic studies of unique cross-linked lattices between four isomeric biantennary oligosachharides and soybean agglutinin. Biochemistry, 1997, 36(49): 15073-15080.

[15] Schwarz F P, Puri K D, Bhat R G, et al. Thermodynamics of monosaccharide binding to Concanavalin A, pea (Pisum sativum) lectin and lentil (Lens culinaris) lectin. J Biol Chem, 1993, 268(11): 7668-7677.

[16] Delbaere L T, Vandonselaar M, Prasad L, et al. Structures of the lectin IV of Griffonia simplicifolia and its complex with the Lewis b human blood group determinant at 2.0 A resolution, J Mol Biol, 1993, 230(3): 950-965.

[17] Hamelryck T W, Dao-Thi M H, Poortmans F, et al. The crystallographic structure of phytohemagglutinin-L. J Biol Chem, 1996, 271(34): 20479-85.

[18] Banerjee R, Mande S C, Ganesh V, et al. Crystal structure of peanut lectin, a protein with an unusual quaternary structure. Proc Natl Acad Sci U S A, 1994, 91(1): 227-231.

[19] Banerjee R, Das K, Ravishankar R, et al. Conformation, protein-carbohydrate interactions and a novel subunit association in the refined structure of peanut lectin-lactose complex. J Mol Biol, 1996, 259(2): 281-296.

[20] Wang J L, Cunningham B A, Edelman G M. Unusual fragments in the subunit structure of concanavalin A. Proc Natl Acad Sci U S A, 1971, 68(6): 1130-1134.

[21] Reddy G B, Srinivas V R, Ahmad N, et al. Molten globule like state of peanut lectin monomer retains its carbohydrate specificity: Implications in protein folding and legume lectin oligomerization. J Biol Chem, 1999, 274(8): 4500-4503.

[22] Bies C, Lehr C M, Woodley J F. Lectin-mediated drug targeting: history and applications. Adv Drug Deliv Rev, 2004, 56(4): 425-435.

[23] Bezerra G A, Olivera T M, Moreno F B, et al. Structural analysis of Canavalia maritima and Canavalia gladiata lectins complexed with different dimannosides: New insights into the understanding of the structure-biological activity relationship in legume lectins. J Struct Biol, 2007, 160(2): 168-176.

[24] Wenzel M, Rudiger H. Interaction of pea (Pisum sativum L.) lectin with pea storage proteins. J Plant Physiol, 1995, 145: 191-194.

[25] McPhenon A, Hankins C N, Shannon L. Preliminary X-ray diffraction analysis of crystalline lectins from the seeds and leaves of Sophorajaponica. J Biol Chem, 1987, 262(4): 1791-1794.

[26] Brewin N J. Development of the legume root nodule. Annu Rev Cell Biol, 1991, 7: 191-226.

[27] Hamblin J, Kent S P. Possible role of phytohaemagglutinin in Phaseolus vulgaris L. Nature New Biol, 1973, 245(140): 28-30.

[28] Bohlool B B, Schmidt E L. A possible basis for specificity in Rhizobiun-legum root module symbiosis. Science, 1974, 185(4147): 269-271.

[29] Dazzo F B, Truchet G L, Sherwood J E, et al. Specific phases of root hair attachment in the Rhizobium trifolii-clover symbiosis. Appl Environ Microbio, 1984, 48(6): 1140-1150.

[30] Diaz C L, Logman T, Stam H C, et al. Sugar-binging activity of pea lectin express edinabite clover hairy roots. Plant Physiology, 1995, 109(4): 1167-1177.

[31] Kijne J W, Bauchravite M A, Diaz C L. Root lectins and Rhirobia. Plant Physiol, 1997, 115(3): 869-873.

[32] Ambrosi M, Cameron N R, Davis B G. Lectins: tools for the molecular understanding of the glycocode. Org Biomol Chem, 2005, 3(9): 1593-1608.

[33] Gemeiner P, Mislovicová D, Tkác J, et al. Lectinomics II. a highway to biomedical/clinical diagnostics. Biotechnology Advances, 2009, 27(1): 1-15.

[34] Gao J, Liu D, Wang Z. Microarray-based study of carbohydrate-protein binding by gold nanoparticle probes. Anal Chem, 2008, 80(22): 8822-8827.

[35] Carlini C R, Grossi-de-Sá M F. Plant toxic proteins with insecticidal properties. A review on their potentialities as bioinsecticides. Toxicon, 2002, 40(11): 1515-1539.

[36] Vasconcelos I M, Oliveira J T. Antinutritional properties of plant lectins. Toxicon, 2004, 44(4): 1737-1747.

[37] Macedo M L, das Graas Machado Freire M, Maria da Silva M B, et al. Insecticidal action of Bauhinia monandra leaf lectin (BmoLL) against Anagasta kuehniella (Lepidoptera: Pyralidae), Zabrotes subfasciatus and Callosobruchus maculatus (Coleoptera: Bruchidae). Comp Biochem Physiol A Mol Integr Physiol, 2007, 146(4): 486-498.

[38] Melander M, Ahman I, Kamnert I, et al. Pea lectin expressed transgenically in oilseed rape reduces growth rate of pollen beetle larvae. Transgenic Res, 2003, 12(5): 555-567.

[39] Wong J, Wan C T, Ng T B, Characterisation of a haemagglutinin from Hokkaido red bean (Phaseolus vulgaris cv. Hokkaido red bean). J Sci Food Agric, 2010, 90(1): 70-77.

[40] Ficthes E, Gatehouse J A. A comparison of the short and long term effects of insecticidal lectins on the activities of soluble and brush border enzymes of tomato moth larvae (Lacanobia oleracea). J Insect Physiol, 1998, 44(12): 1213-1224.

[41] 罗瑞鸿, 李杨瑞. 木豆凝集素对蚜虫的抗性研究. 武汉植物学研究, 2005, 23(5): 497-502. Luo R H, Li Y R. Journal of Wuhan Botanical Research, 2005, 23(5): 497-502.

[42] 路子显, 常团结, 朱祯. 植物外源凝集素及其在植物基因工程中的应用. 中国生物工程杂志, 2002, 22(2): 3-9. Lu Z X, Chang T J, Zhu Z. Progress in Biotechnology, 2002, 2(22): 3-9.

[43] Araújo-Filho J H, Vasconcelos I M, Martins-Miranda AS, A ConA-like lectin from Dioclea guianensis Benth. has antifungal activity against Colletotrichum gloeosporioides, unlike its homologues, ConM and ConA. J Agric Food Chem, 2010, 58(7): 4090-4096.

[44] 唐海淑,朱凯, 安冉,等. 苦豆子蛋白粗提物抗菌活性的初步研究. 新疆农业科学, 2009, 46(2): 425-429. Tang H S, Zhu K, An R, et al. Xinjiang Agricultural Sciences, 2009, 46(2): 425-429.

[45] Michiels K, Van Damme E J, Smagghe G. Plant-insect interactions: what can we learn from plant lectins. Arch Insect Biochem Physiol, 2010, 73(4):193-212.

[46] Yao H, Xie X, Li Y, et al. Legume Lectin FRIL Preserves neural progenitor cells in suspension culture in vitro. Clin Dev Immunol, 2008, 2008: 1-6.

[47] 谢 超, 裴雪涛. 新的豆类凝集素FRIL及其体外维持造血干/祖细胞特性的作用机制. 生理科学进展, 2003, 34(2): 127-130. Xie C, Pei X T. Progress in Physiological Sciences, 2003, 34(2): 127-130.

[48] Lehr C M. Lectin-mediated drug delivery: The second generation of bioadhesives. J Control Release, 2000, 65(1-2): 19-29.

[49] 秦路平,郭志学,郭庆华. 中草药体外杀精子抗生育作用的研究进展. 药学实践杂志, 1999, 17(3): 169-171. Qin L P, Guo Z X, Guo Q H. The Journal of Pharmaceutical Practice, 1999, 17(3): 169-171.

[50] Mori K, Daitoh T, Irabara M, et al. Significance of D-mannose as a sperm receptor site on the zona pellucida in human fertilization. Am J Obstet Gyneeol, 1989, 161(1): 207-211.

[51] Ichev K, Nakov L, Ovtscharoff W. Soybean agglutinin-binding sites on the human sperm surface. Z Mikrosk Anat Forsch, 1989, 103(4): 555-559.

[52] 王昌梅, 张丽芬, 杨明洁. 白芸豆植物凝集素对不同物种精子的凝集作用与抗孕效果研究. 中国计划生育学杂志, 2010, 176(5) : 272-276. Wang C M, Zhang L F, Yang M J, et al. Chinese Journal of Family Planning, 2010, 176(5): 272-276.

[53] Tang J, Liu Y, Yin P, et al. Concanavalin A-immobilized magnetic nanoparticles for selective enrichment of glycoproteins and application to glycoproteomics in hepatocelluar carcinoma cell line. Proteomics, 2010, 10(10): 2000-2014.

[54] Lin P, Ye X, Ng T. Purification of melibiose-binding lectins from two cultivars of Chinese black soybeans. Acta Biochim Biophys Sin (Shanghai),2008, 40(12): 1029-1038.

[55] Lam S K, Ng T B. First report of a haemagglutinin-induced apoptotic pathway in breast cancer cells. Biosci Rep, 2010, 30(5): 307-317.

[56] Liu Z, Liu B, Zhang Z T, et al. A mannose-binding lectin from Sophora flavescens induces apoptosis in HeLa cells. Phytomedicine, 2008, 15(10): 867-875.

No related articles found!