Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2013, Vol. 33 Issue (11): 32-37    
研究报告     
碳源和氮源对木蹄层孔菌产漆酶的影响及酶学性质研究
尚洁1,2, 吴秋霞2, 练小龙2, 王秋玉1
1 东北林业大学生命科学学院 哈尔滨 150040;
2 北方民族大学生物科学与工程学院 银川 750021
The Effect of Carbon and Nitrogen Sources on Laccase Production and Properties from Fomes fomentarius
SHANG Jie1,2, WU Qiu-xia2, LIAN Xiao-long2, WANG Qiu-yu1
1. Northeast Forestry University, College of Life Science, Harbin 150040, China;
2. Beifang University of Nationalities, College of Biological Science and Engineering, Yinchuan 750021, China
 全文: PDF(579 KB)   HTML
摘要: 对不同碳源和氮源及碳氮比对木蹄层孔菌产漆酶的影响进行了研究,以提高漆酶产量,同时分析了该漆酶的酶学性质。漆酶合成的最适碳源是麦麸,最适氮源是蛋白胨,C:N为10.4,优化后漆酶产量增加了约7.88倍;反应最适pH为3.0,最适反应温度为50℃,Km为0.20 mmol/L,Vmax为2.58 mmol/L·min;DTT 0.1mmol/L和NaN3 10mmol/L几乎能抑制漆酶全部活性,终浓度为10mmol/L的Ba2+,Ca2+,Co2+和Fe2+也几乎能抑制该酶的全部活性。该研究将为木蹄层孔菌漆酶的生产及在环境工程领域的应用提供基础信息。
关键词: 木蹄层孔菌漆酶碳源和氮源酶学性质    
Abstract: The production of laccase by Fomes fomentarius was studied. Cultures conditions involving variations in carbon and nitrogen sources and different C:N ratios were examined at constant temperature and pH, with the aim of increasing yield of laccase. And its enzymatic properties were determined. The best results were obtained when using wheat bran and peptone as carbon and nitrogen sources respectively with a C:N ratio of 10.4. Compared to the initial medium, the highest laccase yield observed is approximately increased by 7.88 times under the optimized conditions. The optimum pH and temperature for its activity is 3.0 and 50℃ with the corresponding Km and Vmax of 0.20 mmol/L and 2.58 mmol/L·min respectively. DTT(0.1mmol/L) and NaN3(10mmol/L) nearly inhibit all activity of the laccase, as well as the metal ions especially Ba2+, Ca2+, Co2+ and Fe2+(10mmol/L). In summary, our results will provide basic information to the production of laccase by Fomes fomentarius and the utilization of environmental engineering in the future.
Key words: Fomes fomentarius    Laccase    Carbon and nitrogen sources    Enzymatic properties
收稿日期: 2013-06-14 出版日期: 2013-11-25
ZTFLH:  X172  
基金资助: 黑龙江省科技攻关重大项目资助(GA06B301)
通讯作者: 王秋玉     E-mail: wqyll@sina.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
尚洁
吴秋霞
练小龙
王秋玉

引用本文:

尚洁, 吴秋霞, 练小龙, 王秋玉. 碳源和氮源对木蹄层孔菌产漆酶的影响及酶学性质研究[J]. 中国生物工程杂志, 2013, 33(11): 32-37.

SHANG Jie, WU Qiu-xia, LIAN Xiao-long, WANG Qiu-yu. The Effect of Carbon and Nitrogen Sources on Laccase Production and Properties from Fomes fomentarius. China Biotechnology, 2013, 33(11): 32-37.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2013/V33/I11/32

[1] Needham J. Science and Civilisation in China. London: Cambridge University Press, 1976. 382.
[2] Claus H. Laccases: structure, reactions, distribution. Micron, 2004, 35(1): 93-96.
[3] 刘欣, 赵敏, 王秋玉. 5种木材腐朽菌的生物学特性及对白桦木材腐朽能力的分析. 东北林业大学学报, 2008, 36(3): 41-44. Liu X, Zhao M, Wang Q Y. Biological Characters of five species of wood rot fungi and decay capacity to Betula platyphylla. Journal of Northeast Forestry University, 2008, 36(3): 41-44.
[4] Murugesan K, Yang I H, Kim Y M, et al. Enhanced transformation of malachite green by laccase of Ganoderma lucidum in the presence of natural phenolic compounds. Applied Microbiology and Biotechnology, 2009, 82(2): 341-350.
[5] Singh S, Pakshirajan K, Daverey A. Enhanced decolourization of Direct Red-80 dye by the white rot fungus Phanerochaete chrysosporium employing sequential design of experiments. Biodegradation, 2010, 21(4): 501-511.
[6] 黄茜, 黄凤洪, 江木兰, 等. 木质素降解菌的筛选及混合菌发酵降解秸秆的研究. 中国生物工程杂志, 2008, 8(2): 66-70. Huang Q, Huang F H, Jiang M L, et al. The selection of lignin-degrading fungus and the straw fermentation by mixed strains. China Biotechnology, 2008, 8(2): 66-70.
[7] Tien M, Kirk T K. Lignin-degrading enzyme from the hymenomycete Phanerochaete chrysosporium Burds. Science(Washington), 1983, 221(4611): 661-662.
[8] 林俊芳, 刘志明, 陈晓阳, 等. 真菌漆酶的酶活测定方法评价. 生物加工过程, 2009, 7(4): 1-8. Lin J F, Liu ZH M, Chen X Y, et al. Evaluation of assay methods for determining fungal laccase activity. Chinese Journal of Bioprocess Engineering, 2009, 7(4): 1-8.
[9] Wolfenden B S, Willson R L. Radical-cations as reference chromogens in kinetic studies of ono-electron transfer reactions. J Chem Soc Perkin Trans, 1982, 2: 805-812.
[10] Srinivasan C, Dsouza T M, Boominathan K, et al. Demonstration of Laccase in the White rot Basidiomycete Phanerochaete chrysosporium BKM-F1767. Applied and Environmental Microbiology, 1995, 61(12): 4274-4277.
[11] SchÜckel J, Matura A, Van Pee K H. One-copper laccase-related enzyme from Marasmius sp.: Purification, characterization and bleaching of textile dyes. Enzyme and Microbial Technology, 2011, 48(3): 278-284.
[12] Wu Y R, Luo Z H, Kwok-Kei Chow R, et al. Purification and characterization of an extracellular laccase from the anthracene-degrading fungus Fusarium solani MAS2. Bioresource Technology, 2010, 101(24): 9772-9777.
[13] Okamoto K, Yanagi S O, Sakai T. Purification and characterization of extracellular laccase from Pleurotus ostreatus. Mycoscience, 2000, 41(1): 7-13.
[14] Lu L, Zhao M, Zhang B B, et al. Purification and characterization of laccase from Pycnoporus sanguineus and decolorization of an anthraquinone dye by the enzyme. Applied Microbiology and Biotechnology, 2007, 74(6): 1232-1239.
[15] Park K M, Park S S. Purification and characterization of laccase from basidiomycete Fomitella fraxinea. Journal of Microbiology and Biotechnology, 2008, 18(4): 670.
[16] Baldrian P. Purification and characterization of laccase from the white-rot fungus Daedalea quercina and decolorization of synthetic dyes by the enzyme. Applied Microbiology and Biotechnology, 2004, 63(5): 560-563.
[17] Wells A, Teria M, Eve T. Green oxidations with laccase-mediator systems. Biochemical Society Transactions, 2006, 34(2): 304.
[18] Solomon E I, Sundaram U M, Machonkin T E. Multicopper oxidases and oxygenases. Chemical Reviews, 1996, 96(7):2563-2606.
[1] 梁爱玲,刘文婷,武攀,李倩,高健,张洁,刘卫东,贾士儒,郑迎迎. 来源于Exophiala aquamarina的新型玉米赤霉烯酮水解酶的性质及底物结合中心关键氨基酸的功能研究*[J]. 中国生物工程杂志, 2021, 41(10): 19-27.
[2] 朱衡,张继福,张云,胡云峰. 环氧交联剂和氨基载体固定化海洋假丝酵母脂肪酶*[J]. 中国生物工程杂志, 2020, 40(5): 57-68.
[3] 马翠萍,刘朵朵,潘炳菊,申会涛,宋亚囝. 来源于嗜碱芽孢杆菌N16-5甘露聚糖利用基因簇的乙酰酯酶AesA的克隆及性质分析*[J]. 中国生物工程杂志, 2020, 40(3): 65-71.
[4] 朱衡,张继福,张云,孙爱君,胡云峰. 聚乙二醇二缩水甘油醚交联氨基载体LX-1000EA固定化脂肪酶 *[J]. 中国生物工程杂志, 2020, 40(1-2): 124-132.
[5] 王菲,胡春辉,于浩. 6-羟基烟酸3-单加氧酶(NicC)催化反应机理研究 *[J]. 中国生物工程杂志, 2019, 39(7): 15-23.
[6] 王鑫淼,张康,陈晟,吴敬. 嗜热网球菌纤维二糖差向异构酶在枯草芽孢杆菌中的表达及发酵优化 *[J]. 中国生物工程杂志, 2019, 39(7): 24-31.
[7] 谢玉锋,韩雪梅,路福平. 副干酪乳杆菌β-葡糖苷酶的表达、纯化及酶学性质研究 *[J]. 中国生物工程杂志, 2019, 39(5): 72-79.
[8] 朱梦露,王雪雨,刘鑫,路福平,孙登岳,秦慧民. 一种新型亮氨酸5-羟化酶NmLEH的异源表达、纯化及酶学性质分析 *[J]. 中国生物工程杂志, 2019, 39(12): 24-34.
[9] 王彤,徐岩,喻晓蔚. 毕赤酵母Kex2蛋白酶的同源表达及酶学性质 *[J]. 中国生物工程杂志, 2019, 39(1): 38-45.
[10] 郭倩倩,高登科,程晓涛,路福平,田之仓优,秦慧民. 胆固醇氧化酶PsCO4异源表达、纯化及酶学性质分析 *[J]. 中国生物工程杂志, 2018, 38(6): 34-42.
[11] 王男,金吕华,张玲,林荣,杨海麟. 信号肽对亮氨酸脱氢酶在Bacillus subtilis中分泌表达的影响及酶学性质研究[J]. 中国生物工程杂志, 2018, 38(4): 46-53.
[12] 程可利, 刘晓, 李素霞. 对SDS稳定的V8(V125T)蛋白酶突变体的高效表达及性质研究[J]. 中国生物工程杂志, 2017, 37(4): 56-67.
[13] 李雪晴, 袁风娇, 程建青, 董运海, 李剑芳, 邬敏辰. 杂合β-甘露聚糖酶AuMan5Aloop的H321对其酶学性质的影响[J]. 中国生物工程杂志, 2017, 37(2): 48-53.
[14] 王世伟, 王敏, 王卿惠. Rhodococcus ruber CGMCC3090腈水合酶纯化、酶学性质及结晶研究[J]. 中国生物工程杂志, 2017, 37(10): 42-52.
[15] 谢喜珍, 林娟, 谢勇, 叶秀云. 海洋来源琼胶酶的分离纯化及酶学性质研究[J]. 中国生物工程杂志, 2017, 37(1): 46-52.