Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2017, Vol. 37 Issue (2): 48-53    DOI: 10.13523/j.cb.20170208
研究报告     
杂合β-甘露聚糖酶AuMan5Aloop的H321对其酶学性质的影响
李雪晴1, 袁风娇1, 程建青2, 董运海1, 李剑芳1, 邬敏辰2
1. 江南大学食品学院 无锡 214122;
2. 江南大学无锡医学院 无锡 214122
Effect of Amino Acid H321 on the Enzymatic Properties of Hybrid β-Mannanase AuMan5Aloop
LI Xue-qing1, YUAN Feng-jiau1, CHENG Jian-qing2, DONG Yun-hai1, LI Jian-fang1, WU Min-chen2
1. School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
2. Wuxi Medical School, Jiangnan University, Wuxi 214122, China
 全文: PDF(605 KB)   HTML
摘要:

目的:将loop置换杂合β-甘露聚糖酶AuMan5Aloop的H321突变回野生型酶AuMan5A对应的Gly,以分析杂合酶的酶学性质与H321的相关性。方法:采用大引物PCR技术将AuMan5Aloop基因(Auman5Aloop)编码H321的密码子CAC突变为Gly的GGT,构建突变酶基因Auman5Aloop/H321G;借助表达质粒pPICZαA将该突变酶基因在Pichia pastoris GS115中实施表达,并分析重组表达产物AuMan5Aloop/H321G的酶学性质。结果:AuMan5Aloop H321G置换前后的最适温度Topt均为75℃,高于AuMan5A的65℃;AuMan5Aloop/H321G在70℃的半衰期t1/270为300 min,介于AuMan5A(10 min)和AuMan5Aloop(480 min)之间;AuMan5Aloop/H321G比活性分别为AuMan5A和AuMan5Aloop的12.8和1.43倍;催化效率kcat/Km为后两者的14.1和1.12倍。结论:通过H321G置换及对3种酶的温度特性、比活性和催化效率的测定及比较,证实了H321对AuMan5Aloop的酶学性质有一定的影响。

关键词: &beta杂合酶定点突变-甘露聚糖酶突变酶酶学性质    
Abstract:

Objective: AuMan5Aloop, a hybrid β-mannanase, was constructed by substituting the loop structure of wild-type AuMan5A with the corresponding one of Aspergillus fumigatus β-mannanase. To analyze the correlation between the enzymatic properties and amino acid H321 of hybrid β-mannanase, its H321 was mutated into the corresponding Gly of AuMan5A. Methods: Using the mega primer PCR method, the mutant enzyme gene, Auman5Aloop/H321G, was constructed by mutating a H321-encoding codon CAC of Auman5Aloop into a Gly-encoding GGT. Then, Auman5Aloop/H321G was expressed in Pichia pastoris GS115 mediated by expression plasmid pPICZαA, and the enzymatic properties of expressed recombinant enzyme, AuMan5Aloop/H321G, were analyzed. Results: Before and after the H321G substitution, the temperature optimum (Topt) of AuMan5Aloop or AuMan5Aloop/H321G was 75℃, higher than that (65℃) of AuMan5A. The half-life at 70℃ (t1/270) of AuMan5Aloop/H321G was 300 min, between AuMan5A (10 min) and AuMan5Aloop (480 min). Besides, its specific activity was 12.8 and 1.43 fold those of AuMan5A and AuMan5Aloop, and its catalytic efficiency (kcat/Km) was 14.1 and 1.12 fold those of the latter two, respectively. Conclusion: After H321G substitution as well as determination and comparison of temperature characteristics, specific activity and catalytic efficiency of three enzymes, the certain effect of H321 on the enzymatic properties of AuMan5Aloop was confirmed.

Key words: β-Mannanase    Enzymatic properties    Hybrid enzyme    Site-directed mutagenesis    Mutant enzyme
收稿日期: 2016-07-15 出版日期: 2017-02-25
ZTFLH:  TS201.25  
基金资助:

国家自然科学基金资助项目(31271811)

通讯作者: 邬敏辰     E-mail: biowmc@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

李雪晴, 袁风娇, 程建青, 董运海, 李剑芳, 邬敏辰. 杂合β-甘露聚糖酶AuMan5Aloop的H321对其酶学性质的影响[J]. 中国生物工程杂志, 2017, 37(2): 48-53.

LI Xue-qing, YUAN Feng-jiau, CHENG Jian-qing, DONG Yun-hai, LI Jian-fang, WU Min-chen. Effect of Amino Acid H321 on the Enzymatic Properties of Hybrid β-Mannanase AuMan5Aloop. China Biotechnology, 2017, 37(2): 48-53.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20170208        https://manu60.magtech.com.cn/biotech/CN/Y2017/V37/I2/48

[1] Huang J W, Chen C C, Huang C H, et al. Improving the specific activity of β-mannanase from Aspergillus niger BK01 by structure-based rational design. Biochim Biophys Acta, 2014, 1844(3):663-669.
[2] Zhang Y, Ju J, Peng H, et al. Biochemical and structural characterization of the intracellular mannanase AaManA of Alicyclobacillus acidocaldarius reveals a novel glycoside hydrolase family belonging to clan GH-A. J Biol Chem, 2008, 283(46):31551-31558.
[3] Wang C H, Luo H Y, Niu C F, et al. Biochemical characterization of a thermophilic β-mannanase from Talaromyces leycettanus JCM12802 with high specific activity. Appl Microbiol Biotechnol, 2015, 99:1217-1228.
[4] Couturier M, Feliu J, Bozonnet S, et al. Molecular engineering of fungal GH5 and GH26 beta-(1,4)-mannanases toward improvement of enzyme activity. PLoS One, 2013, 8(11):e79800.
[5] Chen K, Liu S, Ma J, et al. Deletion combined with saturation mutagenesis of N-terminal residues in transglutaminase from Streptomyces hygroscopicus results in enhanced activity and thermostability. Process Biochem, 2012, 47(12):2329-2334.
[6] Duan X, Chen J, Wu J. Improving the thermostability and catalytic efficiency of Bacillus deramificans pullulanase by site-directed mutagenesis. Appl Environ Microbiol, 2013, 79(13):4072-4077.
[7] Voutilainen S P, Murray P G, Tuohy M G, et al. Expression of Talaromyces emersonii cellobiohydrolase Cel7A in Saccharomyces cerevisiae and rational mutagenesis to improve its thermostability and activity. Protein Eng Des Sel, 2010, 23(2):69-79.
[8] Dong Y H, Li J F, Hu D, et al. Replacing a piece of loop-structure in the substrate-binding groove of Aspergillus usamii beta-mannanase, AuMan5A, to improve its enzymatic properties by rational design. Appl Microbiol Biotechnol, 2016, 100(9):3989-3998.
[9] 李剑芳, 董运海, 胡蝶, 等. β-甘露聚糖酶AuMan5A/Af酶学性质的改善与其Asp320的相关性分析. 微生物学报, 2016, 56(2):301-308. Li J F, Dong Y H, Hu D, et al. Correlation between superior enzymatic properties of β-mannanase AuMan5A/Af and its residue Asp320. Acta Microbiologica Sinica, 2016, 56(2):301-308.
[10] Xie Z H, Shi X J. Fast and almost 100% efficiency site-directed mutagenesis by the mega primer PCR method. Prog Biochem Biophys, 2009, 36(11):1490-1494.
[11] Li J F, Zhao S G, Tang C D, et a1. Cloning and functional expression of an acidophilic β-mannanase gene (Anmart5A) from Aspergillus niger LW-1 in Pichia pastoris. J Agric Food Chem, 2012, 60(3):765-773.
[12] Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976, 72:248-254.
[13] Fei B J, Xu H, Cao Y, et al. A multi-factors rational design strategy for enhancing the thermostability of Escherichia coli AppA phytase. J Ind Microbiol Biotechnol, 2013, 40(5):457-464.
[14] Missimer J H, Steinmetz M O, Baron R, et al. Configurational entropy elucidates the role of salt-bridge networks in protein thermostability. Protein Sci, 2007, 16:1349-1359.
[15] Ragone R. Hydrogen-bonding classes in proteins and their contribution to the unfolding reaction. Protein Sci, 2001, 10:2075-2082.
[16] Gray T M, Matthews B W. Structural analysis of the temperature-sensitive mutant of bacteriophage T4 lysozyme, glycine 156 aspartic acid. J Biol Chem, 1987, 262(35):16858-16864.

[1] 郭芳,张良,冯旭东,李春. 植物源UDP-糖基转移酶及其分子改造*[J]. 中国生物工程杂志, 2021, 41(9): 78-91.
[2] 梁爱玲,刘文婷,武攀,李倩,高健,张洁,刘卫东,贾士儒,郑迎迎. 来源于Exophiala aquamarina的新型玉米赤霉烯酮水解酶的性质及底物结合中心关键氨基酸的功能研究*[J]. 中国生物工程杂志, 2021, 41(10): 19-27.
[3] 彭向雷,王烨,王丽男,苏彦斌,付远辉,郑妍鹏,何金生. 单引物PCR法引入定点突变 *[J]. 中国生物工程杂志, 2020, 40(8): 19-23.
[4] 朱衡,张继福,张云,胡云峰. 环氧交联剂和氨基载体固定化海洋假丝酵母脂肪酶*[J]. 中国生物工程杂志, 2020, 40(5): 57-68.
[5] 赵晓艳,陈允妲,章雅倩,吴晓玉,王飞,陈金印. Myxococcus sp.V11海藻糖合酶TreS II分子改造 *[J]. 中国生物工程杂志, 2020, 40(3): 79-87.
[6] 苏永君,胡蝶,胡博淳,李闯,文正,章晨,邬敏辰. 定点突变提高环氧化物水解酶AuEH2催化对甲基苯基缩水甘油醚的对映选择性*[J]. 中国生物工程杂志, 2020, 40(3): 88-95.
[7] 马翠萍,刘朵朵,潘炳菊,申会涛,宋亚囝. 来源于嗜碱芽孢杆菌N16-5甘露聚糖利用基因簇的乙酰酯酶AesA的克隆及性质分析*[J]. 中国生物工程杂志, 2020, 40(3): 65-71.
[8] 朱衡,张继福,张云,孙爱君,胡云峰. 聚乙二醇二缩水甘油醚交联氨基载体LX-1000EA固定化脂肪酶 *[J]. 中国生物工程杂志, 2020, 40(1-2): 124-132.
[9] 王菲,胡春辉,于浩. 6-羟基烟酸3-单加氧酶(NicC)催化反应机理研究 *[J]. 中国生物工程杂志, 2019, 39(7): 15-23.
[10] 王鑫淼,张康,陈晟,吴敬. 嗜热网球菌纤维二糖差向异构酶在枯草芽孢杆菌中的表达及发酵优化 *[J]. 中国生物工程杂志, 2019, 39(7): 24-31.
[11] 阚婷婷,宗迅成,苏永君,王婷婷,李闯,胡蝶,邬敏辰. 定点突变改善PvEH1对邻甲基苯基缩水甘油醚的催化特性 *[J]. 中国生物工程杂志, 2019, 39(6): 9-16.
[12] 谢玉锋,韩雪梅,路福平. 副干酪乳杆菌β-葡糖苷酶的表达、纯化及酶学性质研究 *[J]. 中国生物工程杂志, 2019, 39(5): 72-79.
[13] 朱梦露,王雪雨,刘鑫,路福平,孙登岳,秦慧民. 一种新型亮氨酸5-羟化酶NmLEH的异源表达、纯化及酶学性质分析 *[J]. 中国生物工程杂志, 2019, 39(12): 24-34.
[14] 王彤,徐岩,喻晓蔚. 毕赤酵母Kex2蛋白酶的同源表达及酶学性质 *[J]. 中国生物工程杂志, 2019, 39(1): 38-45.
[15] 郭倩倩,高登科,程晓涛,路福平,田之仓优,秦慧民. 胆固醇氧化酶PsCO4异源表达、纯化及酶学性质分析 *[J]. 中国生物工程杂志, 2018, 38(6): 34-42.