Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2020, Vol. 40 Issue (3): 65-71    DOI: 10.13523/j.cb.1907055
研究报告     
来源于嗜碱芽孢杆菌N16-5甘露聚糖利用基因簇的乙酰酯酶AesA的克隆及性质分析*
马翠萍,刘朵朵,潘炳菊,申会涛,宋亚囝()
天津科技大学生物工程学院 工业发酵微生物教育部重点实验室暨天津市工业微生物重点实验室 天津 300457
Cloning and Characterization of Acetylesterase AesA Derived from Mannan Utilization Gene Cluster of Bacillus sp. N16-5
MA Cui-ping,LIU Duo-duo,PAN Bing-ju,SHEN Hui-tao,SONG Ya-jian()
Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Lab of Industrial Microbiology,College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
 全文: PDF(687 KB)   HTML
摘要:

天然来源的多糖底物上常存在乙酰基取代,特异性的乙酰酯酶能够切割这些底物上的乙酰基,从而有利于聚糖底物的进一步降解.对Bacillus sp. N16-5甘露聚糖利用基因簇上编码的乙酰酯酶AesA进行了基因克隆和异源表达,并对其酶学性质进行了研究.aesA基因长957bp,编码318个氨基酸,属于碳水化合物酯酶第7家族.AesA对4-甲基伞形酮乙酸酯(4-methylumbelliferyl-acetate)表现出较好的催化活性,金属离子Fe3+,Fe2+,Mn2+及Cu2+对AesA活性均有不同程度的促进作用.AesA与甘露聚糖酶ManA对乙酰化的甘露聚糖底物具有显著的协同作用.此项研究有助于理解嗜碱芽孢杆菌Bacillus sp.N16-5对甘露聚糖的水解机制,并且在甘露聚糖降解中具有潜在的应用前景.

关键词: 嗜碱芽孢杆菌N16-5乙酰酯酶酶学性质甘露聚糖    
Abstract:

The residues of natural polysaccharide substrates were often substituted by acetyl groups, and acetyl esterase can cut acetyl groups on these substrates, which is conducive to the further degradation. The gene aesA which encoding an acetyl esterase was cloned from mannan utilization gene cluster of Bacillus sp. N16-5 and heterologously expressed in prokaryotic host. The gene aesA is 957bp long and encodes 318 amino acids, belonging to the carbohydrate esterase family 7 (CE7). AesA showed good catalytic activity for 4-methylumbelliferyl-acetate and pNP-acetate, however, there was no active effect on alpha-naphthyl acetate. The enzyme activity for 4-methylumbelliferyl-acetate is 1.68U/mg, and the kinetic parameters Km, Vmax and kcat/Km, were measured by 3.27mmol/L, 0.044mmol/min and 289.71ms-1, respectively. Metal ions Fe3+, Fe2+, Mn2+ and Cu2+ all promoted the activity of AesA, and Cu2+ exhibited the most significant promoting effect. AesA has a significant synergistic effect with β-mannanase ManA on degrading acetylated mannan substrates, and the synergy degree reached 1.47 when using acetylated locust bean gum as substrate. It is helpful to understand the mannan utilization mechanism of Bacillus sp. N16-5, and has potential application prospects in mannan degradation.

Key words: Bacillus sp. N16-5    Acetylesterase    Enzymological properties    Mannan
收稿日期: 2019-08-01 出版日期: 2020-04-18
ZTFLH:  Q946.5  
基金资助: * 国家重点研发计划()资助项目(2017YFD0400304)
通讯作者: 宋亚囝     E-mail: songyajian@tust.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
马翠萍
刘朵朵
潘炳菊
申会涛
宋亚囝

引用本文:

马翠萍,刘朵朵,潘炳菊,申会涛,宋亚囝. 来源于嗜碱芽孢杆菌N16-5甘露聚糖利用基因簇的乙酰酯酶AesA的克隆及性质分析*[J]. 中国生物工程杂志, 2020, 40(3): 65-71.

MA Cui-ping,LIU Duo-duo,PAN Bing-ju,SHEN Hui-tao,SONG Ya-jian. Cloning and Characterization of Acetylesterase AesA Derived from Mannan Utilization Gene Cluster of Bacillus sp. N16-5. China Biotechnology, 2020, 40(3): 65-71.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.1907055        https://manu60.magtech.com.cn/biotech/CN/Y2020/V40/I3/65

引物名称序列克隆基因
aesA -f5'-CCGCTCGAGTTATGAACGTAAATATTGCATGATTATATCG-3'aesA
aesA -r5'-CGCCATATGGTGCCGACAATTGACTTACCT-3'
表1  引物
图1  AesA蛋白序列系统进化树分析
图2  AesA的异源表达及蛋白质纯化
底物Vmax (mmol /min)kcat (s-1)Km (mmol/L)kcat/Km(ms-1)比酶活 (U/mg)
乙酸-α-萘酯NNNNN
乙酸对硝基苯酯0.0360.773.36228.881.53
4-甲基伞形酮乙酸酯0.0440.953.27289.711.68
表2  AesA 底物特异性及动力学分析
图3  重组AesA最适温度(a)及pH(b)
金属离子及化学试剂相对活性(%)
对照100.0
Li+73.7 ± 0.9
Fe3+139.6 ± 1.4
Fe2+134.6 ± 1.5
Zn2+67.2 ± 1.3
Mn2+116.3 ± 0.9
Ni2+73.7± 1.4
K+98.5± 1.1
Cu2+140.9 ±0.9
Mg2+74.1 ±0.5
Ca2+71.2 ± 0.6
乙醇66.1 ±0.7
SDS89.8± 1.5
EDTA-Na293.6 ± 0.5
β-巯基乙醇51.2 ± 0.8
表3  金属离子,化学试剂对AesA活性的影响
乙酰化魔芋甘露聚糖乙酰化刺槐豆胶
还原糖生成量
(mmol)
协同率显著性还原糖生成量
(mmol)
协同率显著性
ManA0.41±00.34±0.02
AesA0.04±0.010.03±0
AesA和ManA0.67±0.031.47±0.05**0.5±0.021.34±0.12*
表4  AesA和ManA的协同作用
[1] Topakas E,Paul C. Microbial xylanolytic carbohydrate esterases. Springer Netherlands: Industrial Enzymes, 2007: 20-21.
[2] Hu X,Zhang P,Miao M,et al.Development of a recombinant d-mannose isomerase and its characterizations for d-mannose synthesis. International Journal of Biological Macromolecules,2016,89(8): 328-335.
[3] Koutaniemi S,van Gool M P,Juvonen M,et al. Distinct roles of carbohydrate esterase family CE16 acetyl esterases and polymer-acting acetyl xylan esterases in xylan deacetylation. Journal of Biotechnology,2013,168(4): 684-692.
[4] 吴红丽,薛勇,刘健,等. 乙酰木聚糖酯酶研究进展. 中国生物工程杂志, 2016,36(3):102-110.
Wu H L,Xue Y,Liu J,et al.Research progress of acetylxylanesterase. China Biotechnology, 2016,36(3):102-110.
[5] Saumya S,Gursharan S,Kumar A S.Mannans: An overview of properties and application in food products. International Journal of Biological Macromolecules, 2018,119(11):79-95.
[6] 张云程,张艳,张洋,等. 甘露消毒丹的临床运用. 陕西中医,2002,23(2): 33-33.
Zhang Y C,Zhang Y,Zhang Y,et al.Clinical application of manna disinfectant. Shanxi Traditional Chinese Medicine,2002,23(2): 33-33.
[7] Tenkanen M,Thornton J,Viikari L.An acetylglucomannan esterase of Aspergillus oryzae;purification,characterization and role in the hydrolysis of O -acetyl-galactoglucomannan. Journal of Biotechnology,1995,42(3): 197-206.
[8] Ma Y H,Xue Y F,Dou Y,et al.Characterization and gene cloning of a novel β-mannanase from alkaliphilic Bacillus sp. N16-5. Extremophiles,2004,8(6): 447-454.
[9] Song Y J,Xue Y F,Ma Y H.Global microarray analysis of carbohydrate use in alkaliphilic hemicellulolytic bacterium Bacillus sp. N16-5. PLoS One,2013, 8(1): e54090.
[10] Mai-Gisondi G, Master E R.Colorimetric detection of acetyl xylan esterase activities. Methods in Molecular Biology,2017, 1588(4):45-57.
[11] Gao S, Nishinari K.Effect of degree of acetylation on gelation of konjac glucomannan. Biomacromolecules,2004,5(5): 175-185.
[12] 光善仪,宫晓梅,高晓燕,等. 乙酸酐对魔芋葡甘聚糖的改性. 精细化工, 2004,21(7): 529-531.
Guang S Y,Gong X M,Gao X Y,et al.Modification of konjac glucomannan by acetic anhydride. Fine Chemical Engineering,2004,21(7): 529-531.
[13] Levisson M, Han G W, Deller M C,et al.Functional and structural characterization of a thermostable acetyl esterase from Thermotoga maritima. Proteins-structure Function & Bioinformatics,2012,80(6): 1545-1559.
[14] Lorenz W W, Wiegel J.Isolation,analysis,and expression of two genes from Thermoanaerobacterium sp. strain JW/SL YS485: a beta-xylosidase and a novel acetyl xylan esterase with cephalosporin C deacetylase activity. Journal of Bacteriology,1997, 179(17): 5436.
[15] Florence V, Charnock S J, Verschueren K H G,et al. Multifunctional xylooligosaccharide/cephalosporin C deacetylase revealed by the hexameric structure of the Bacillus subtilis enzyme at 1.9A resolution. Journal of Molecular Biology,2003,330(3): 593-606.
[16] 王瑶,王睿琪,那金,等. 甘露聚糖酶协同水解甘露聚糖研究进展. 中国农学通报,2017,33(21): 21-26.
Wang Y, Wang R Q, Na J,et al.Research progress of manganase synergistic hydrolysis of mannose. Chinese Agricultural Science Bulletin,2017,33(21): 21-26.
[1] 梁爱玲,刘文婷,武攀,李倩,高健,张洁,刘卫东,贾士儒,郑迎迎. 来源于Exophiala aquamarina的新型玉米赤霉烯酮水解酶的性质及底物结合中心关键氨基酸的功能研究*[J]. 中国生物工程杂志, 2021, 41(10): 19-27.
[2] 朱衡,张继福,张云,胡云峰. 环氧交联剂和氨基载体固定化海洋假丝酵母脂肪酶*[J]. 中国生物工程杂志, 2020, 40(5): 57-68.
[3] 朱衡,张继福,张云,孙爱君,胡云峰. 聚乙二醇二缩水甘油醚交联氨基载体LX-1000EA固定化脂肪酶 *[J]. 中国生物工程杂志, 2020, 40(1-2): 124-132.
[4] 王菲,胡春辉,于浩. 6-羟基烟酸3-单加氧酶(NicC)催化反应机理研究 *[J]. 中国生物工程杂志, 2019, 39(7): 15-23.
[5] 王鑫淼,张康,陈晟,吴敬. 嗜热网球菌纤维二糖差向异构酶在枯草芽孢杆菌中的表达及发酵优化 *[J]. 中国生物工程杂志, 2019, 39(7): 24-31.
[6] 谢玉锋,韩雪梅,路福平. 副干酪乳杆菌β-葡糖苷酶的表达、纯化及酶学性质研究 *[J]. 中国生物工程杂志, 2019, 39(5): 72-79.
[7] 姚银,闵琪,熊海容,张莉. 木聚糖酶和甘露聚糖酶在毕赤酵母中的共表达及产酶分析 *[J]. 中国生物工程杂志, 2019, 39(3): 37-45.
[8] 朱梦露,王雪雨,刘鑫,路福平,孙登岳,秦慧民. 一种新型亮氨酸5-羟化酶NmLEH的异源表达、纯化及酶学性质分析 *[J]. 中国生物工程杂志, 2019, 39(12): 24-34.
[9] 王彤,徐岩,喻晓蔚. 毕赤酵母Kex2蛋白酶的同源表达及酶学性质 *[J]. 中国生物工程杂志, 2019, 39(1): 38-45.
[10] 郭倩倩,高登科,程晓涛,路福平,田之仓优,秦慧民. 胆固醇氧化酶PsCO4异源表达、纯化及酶学性质分析 *[J]. 中国生物工程杂志, 2018, 38(6): 34-42.
[11] 王男,金吕华,张玲,林荣,杨海麟. 信号肽对亮氨酸脱氢酶在Bacillus subtilis中分泌表达的影响及酶学性质研究[J]. 中国生物工程杂志, 2018, 38(4): 46-53.
[12] 杨青, 汪斌, 王亚伟, 张华山, 熊海容, 张莉. 介导两种半纤维素酶分泌表达的信号肽比较[J]. 中国生物工程杂志, 2017, 37(8): 15-22.
[13] 程可利, 刘晓, 李素霞. 对SDS稳定的V8(V125T)蛋白酶突变体的高效表达及性质研究[J]. 中国生物工程杂志, 2017, 37(4): 56-67.
[14] 李雪晴, 袁风娇, 程建青, 董运海, 李剑芳, 邬敏辰. 杂合β-甘露聚糖酶AuMan5Aloop的H321对其酶学性质的影响[J]. 中国生物工程杂志, 2017, 37(2): 48-53.
[15] 王世伟, 王敏, 王卿惠. Rhodococcus ruber CGMCC3090腈水合酶纯化、酶学性质及结晶研究[J]. 中国生物工程杂志, 2017, 37(10): 42-52.