Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2021, Vol. 41 Issue (10): 19-27    DOI: 10.13523/j.cb.2105018
研究报告     
来源于Exophiala aquamarina的新型玉米赤霉烯酮水解酶的性质及底物结合中心关键氨基酸的功能研究*
梁爱玲1,2,刘文婷1,2,武攀1,2,李倩2,高健2,张洁2,刘卫东2,贾士儒1,**(),郑迎迎2,**()
1 天津科技大学生物工程学院 工业微生物教育部重点实验室 天津 300457
2 中国科学院天津工业生物技术研究所 天津 300308
Characterization and Function of Key Amino Acids in Substrate Bingding Center of a Novel Zearalenone Hydrolase from Exophiala aquamarina
LIANG Ai-ling1,2,LIU Wen-ting1,2,WU Pan1,2,LI Qian2,GAO Jian2,ZHANG Jie2,LIU Wei-dong2,JIA Shi-ru1,**(),ZHENG Ying-ying2,**()
1 Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
2 Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
 全文: PDF(1634 KB)   HTML
摘要:

目的:开发一种对α-玉米赤霉烯醇(α-zearalenol,α-ZOL)催化活性高的水解酶,以促进玉米赤霉烯酮的酶法完全脱毒,推动玉米赤霉烯酮降解酶在饲料业和畜牧业的应用。方法:在NCBI数据库中通过基因挖掘获得一个来源于Exophiala aquamarina CBS 119918的新型玉米赤霉烯酮水解酶EaZHD,基因全长792 bp。构建重组质粒pET46-Eazhd,并在大肠杆菌中成功表达。经Ni-NTA亲和层析和DEAE阴离子交换柱纯化后,利用HPLC测定残余底物浓度的方法来表征其酶学性质。结果:EaZHD对玉米赤霉烯酮(zearalenone,ZEN)的酶活力为0.764 U/mg,而对α-ZOL的酶活力为1.529 U/mg,是对底物ZEN降解活力的2倍。EaZHD在pH 8.6和温度40℃条件下的活性最高,并具有较好的热稳定性和碱性条件下较高的pH稳定性。通过对EaZHD活性中心附近的氨基酸进行突变和活性分析,确定了对催化活性起关键作用的三个氨基酸,以及对底物特异性有影响的两个关键氨基酸。结论:为推动饲料业和畜牧业中玉米赤霉烯酮的酶法脱毒奠定了基础。

关键词: 新型玉米赤霉烯酮水解酶α-玉米赤霉烯醇酶学性质酶法脱毒    
Abstract:

Objective: In order to promote the enzymatic complete detoxification of zearalenone and the application in feed industry, we proposed to develop a new hydrolase exhibiting higher activity to α-ZOL. Methods: A novel zearalenone hydrolase EaZHD sequence from Exophiala aquamarina CBS 119918 with a total length of 263 amino acids was obtained. The recombinant plasmid pET46-Eazhd was constructed and expressed in E. coli. Then EaZHD was purified with Ni-NTA affinity chromatography and DEAE ion exchange column. The enzymatic properties and activity analysis were evaluated with HPLC. Results: The results showed that the activity of EaZHD was 0.764 U/mg against ZEN and 1.529 U/mg against α-ZOL, which is 2-fold higher. The optimal pH of EaZHD was 8.6 and the optimal temperature was 40 °C. It had a better stability at alkaline pH. The thermal stability is better than ZHD101. Three amino acid residues around active site were identified to play a key role in the catalysis activity and the other two residues were found to affect the substrate specificity. Conclusion: The study provides the basis for the enzymatic detoxification of zearalenone in the feed and stock raising industries.

Key words: Novel zearalenone hydrolase    α-Zearalenol    Enzymatic properties    Enzymatic detoxification
收稿日期: 2021-05-10 出版日期: 2021-11-08
ZTFLH:  Q819  
基金资助: * 国家重点研发计划(2019YFA0905100);* 国家重点研发计划(2018YFA0901201);天津市科学基金(18JCYBJC24300);天津市合成生物技术创新能力提升行动(TSBICIP-KJGG-002-06);天津市合成生物技术创新能力提升行动(TSBICIP-KJGG-001)
通讯作者: 贾士儒,郑迎迎     E-mail: jiashiru@tust.edu.cn;zheng_yy@tib.cas.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
梁爱玲
刘文婷
武攀
李倩
高健
张洁
刘卫东
贾士儒
郑迎迎

引用本文:

梁爱玲,刘文婷,武攀,李倩,高健,张洁,刘卫东,贾士儒,郑迎迎. 来源于Exophiala aquamarina的新型玉米赤霉烯酮水解酶的性质及底物结合中心关键氨基酸的功能研究*[J]. 中国生物工程杂志, 2021, 41(10): 19-27.

LIANG Ai-ling,LIU Wen-ting,WU Pan,LI Qian,GAO Jian,ZHANG Jie,LIU Wei-dong,JIA Shi-ru,ZHENG Ying-ying. Characterization and Function of Key Amino Acids in Substrate Bingding Center of a Novel Zearalenone Hydrolase from Exophiala aquamarina. China Biotechnology, 2021, 41(10): 19-27.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2105018        https://manu60.magtech.com.cn/biotech/CN/Y2021/V41/I10/19

图1  EaZHD与其他同源蛋白的序列比对
引物名称 引物序列(5'-3') 退火温度(℃)
EaZHD-F GACGACGACAAGATGAGAACCAGATCCAACATC 54
EaZHD-R GAGGAGAAGCCCGGTTACAGGTACTTTCTGGTCTTCTC 78
EaZHD-D31A CACGTTGTTTTGATTCCAgccGGTCTTGGAGAGTGC 52
EaZHD-D31H GTTTTGATTCCAcacGGTCTTGGAGAGTGC 50
EaZHD-H125A AACGCTCTTGCTgccGAGGTTCCAACTTAC 55
EaZHD-N153H GCAGCTATGTCCTCTcacGTCGTTGTTGGT 60
EaZHD-V154H GCAGCTATGTCCTCTAACcacGTTGTTGGTTCCGTTGGT 58
EaZHD-V127H AACGCTCTTGCTCACGAGcatCCAACTTACTTGATGGAG 60
表1  引物列表
图2  Eazhd的PCR结果
图3  EaZHD的SDS-PAGE分析
图4  EaZHD与其他常见ZHD的活性比对
图5  pH对EaZHD活性及稳定性的影响
图6  温度对EaZHD活性及其稳定性的影响
图7  EaZHD的模拟结构与ZHD101结构的对比
图8  ZEN和α-ZOL的化学结构式
图9  EaZHD突变体的活性测定
图10  EaZHD野生型与突变体的分子结构比较
[1] Moss M O. The environmental factors controlling mycotoxin formation//Smith J E, Anderson R A. Mycotoxins and Animal Foods. Boca Raton FL: CRC Press, 1991: 37-56.
[2] Speight N. Mycotoxin-related illness//Kohlstadt I. Advancing Medicine with Food and Nutrients, 2nd ed. Boca Raton FL: CRC Press, 2012: 821-850.
[3] Hussein H S, Brasel J M. Toxicity, metabolism, and impact of mycotoxins on humans and animals. Toxicology, 2001, 167(2): 101-134.
pmid: 11567776
[4] Shi H T, Li S L, Bai Y Y, et al. Mycotoxin contamination of food and feed in China: occurrence, detection techniques, toxicological effects and advances in mitigation technologies. Food Control, 2018, 91: 202-215.
doi: 10.1016/j.foodcont.2018.03.036
[5] Shang S H. Economic issues associated with aflatoxins//Eaton D L, Groopman J D. The Toxicology of Aflatoxins: Human Health, Veterinary, and Agricultural Significance. San Diego: Academic Press, 1994: 513-527.
[6] Vasanthi S, Bhat R V. Mycotoxins in foods-occurrence, health & economic significance & food control measures. The Indian Journal of Medical Research, 1998, 108: 212-224.
[7] Pandya J P, Arade P C. Mycotoxin: a devil of human, animal and crop health. Advances in Life Sciences, 2016, 5: 3937-3941.
[8] Liew W P P, Mohd-Redzwan S. Mycotoxin: its impact on gut health and microbiota. Frontiers in Cellular and Infection Microbiology, 2018, 8: 60.
doi: 10.3389/fcimb.2018.00060
[9] Ates E, Mittendorf K, Stroka J, et al. Determination of Fusarium mycotoxins in wheat, maize and animal feed using on-line clean-up with high resolution mass spectrometry. Food Additives & Contaminants: 2013, 30(1): 156-165.
[10] Kotowicz N K, Frac M, Lipiec J. The importance of Fusarium fungi in wheat cultivation-pathogenicity and mycotoxins production: a review. Journal of Animal & Plant Sciences, 2014, 21: 3326-3243.
[11] Kolb E. Recent knowledge on the mechanism of action and metabolism of mycotoxins. Zeitschrift Fur Die Gesamte Innere Medizin Und Ihre Grenzgebiete, 1984, 39(15): 353-358.
[12] Diekman M A, Green M L. Mycotoxins and reproduction in domestic livestock. Journal of Animal Science, 1992, 70(5): 1615-1627.
pmid: 1388147
[13] Zhang Y Y, Jia Z Q, Yin S T, et al. Toxic effects of maternal Zearalenone exposure on uterine capacity and fetal development in gestation rats. Reproductive Sciences (Thousand Oaks, Calif), 2014, 21(6): 743-753.
[14] Rogowska A, Pomastowski P, Sagandykova G, et al. Zearalenone and its metabolites: effect on human health, metabolism and neutralisation methods. Toxicon, 2019, 162: 46-56.
doi: S0041-0101(19)30065-0 pmid: 30851274
[15] Zhou H Y, George S, Hay C, et al. Individual and combined effects of aflatoxin B1, deoxynivalenol and zearalenone on HepG2 and RAW 264.7 cell lines. Food and Chemical Toxicology, 2017, 103: 18-27.
doi: 10.1016/j.fct.2017.02.017
[16] Shier W T, Shier A C, Xie W, et al. Structure-activity relationships for human estrogenic activity in zearalenone mycotoxins. Toxicon, 2001, 39(9): 1435-1438.
pmid: 11384734
[17] Jouany J P. Methods for preventing, decontaminating and minimizing the toxicity of mycotoxins in feeds. Animal Feed Science and Technology, 2007, 137(3-4): 342-362.
doi: 10.1016/j.anifeedsci.2007.06.009
[18] Kalagatur N K, Kamasani J R, Mudili V. Assessment of detoxification efficacy of irradiation on zearalenone mycotoxin in various fruit juices by response surface methodology and elucidation of its in-vitro toxicity. Frontiers in Microbiology, 2018, 9: 2937-2950.
doi: 10.3389/fmicb.2018.02937 pmid: 30555450
[19] Vila-Donat P, Marín S, Sanchis V, et al. A review of the mycotoxin adsorbing agents, with an emphasis on their multi-binding capacity, for animal feed decontamination. Food and Chemical Toxicology, 2018, 114: 246-259.
doi: S0278-6915(18)30118-2 pmid: 29476792
[20] Xu Y, Wang Y F, Ji J, et al. Chemical and toxicological alterations of zearalenone under ozone treatment. Food Additives & Contaminants, 2019, 36(1): 163-174.
[21] Kakeya H, Takahashi-Ando N, Kimura M, et al. Biotransformation of the mycotoxin, zearalenone, to a non-estrogenic compound by a fungal strain of Clonostachys sp. BBioscience, iotechnology & Biochemistry, 2002, 66(12): 2723-2726.
[22] Utermark J, Karlovsky P. Role of zearalenone lactonase in protection of Gliocladium roseum from fungitoxic effects of the mycotoxin zearalenone. Applied and Environmental Microbiology, 2007, 73(2): 637-642.
pmid: 17114328
[23] Takahashi-Ando N, Kimura M, Kakeya H, et al. A novel lactonohydrolase responsible for the detoxification of zearalenone: enzyme purification and gene cloning. Biochemical Journal, 2002, 365(1): 1-6.
doi: 10.1042/bj20020450
[24] Peng W, Ko T P, Yang Y Y, et al. Crystal structure and substrate-binding mode of the mycoestrogen-detoxifying lactonase ZHD from Clonostachys rosea. RSC Advances, 2014, 4(107): 62321-62325.
doi: 10.1039/C4RA12111B
[25] Xu Z X, Liu W D, Chen C C, et al. Enhanced α-zearalenol hydrolyzing activity of a mycoestrogen-detoxifying lactonase by structure-based engineering. ACS Catalysis, 2016, 6(11): 7657-7663.
doi: 10.1021/acscatal.6b01826
[26] Zheng Y Y, Liu W D, Chen C C, et al. Crystal structure of a mycoestrogen-detoxifying lactonase from Rhinocladiella mackenziei: molecular insight into ZHD substrate selectivity. ACS Catalysis, 2018, 8(5): 4294-4298.
doi: 10.1021/acscatal.8b00464
[27] Wang M X, Yin L F, Hu H Z, et al. Expression, functional analysis and mutation of a novel neutral zearalenone-degrading enzyme. International Journal of Biological Macromolecules, 2018, 118: 1284-1292.
doi: 10.1016/j.ijbiomac.2018.06.111
[1] 朱衡,张继福,张云,胡云峰. 环氧交联剂和氨基载体固定化海洋假丝酵母脂肪酶*[J]. 中国生物工程杂志, 2020, 40(5): 57-68.
[2] 马翠萍,刘朵朵,潘炳菊,申会涛,宋亚囝. 来源于嗜碱芽孢杆菌N16-5甘露聚糖利用基因簇的乙酰酯酶AesA的克隆及性质分析*[J]. 中国生物工程杂志, 2020, 40(3): 65-71.
[3] 朱衡,张继福,张云,孙爱君,胡云峰. 聚乙二醇二缩水甘油醚交联氨基载体LX-1000EA固定化脂肪酶 *[J]. 中国生物工程杂志, 2020, 40(1-2): 124-132.
[4] 王菲,胡春辉,于浩. 6-羟基烟酸3-单加氧酶(NicC)催化反应机理研究 *[J]. 中国生物工程杂志, 2019, 39(7): 15-23.
[5] 王鑫淼,张康,陈晟,吴敬. 嗜热网球菌纤维二糖差向异构酶在枯草芽孢杆菌中的表达及发酵优化 *[J]. 中国生物工程杂志, 2019, 39(7): 24-31.
[6] 谢玉锋,韩雪梅,路福平. 副干酪乳杆菌β-葡糖苷酶的表达、纯化及酶学性质研究 *[J]. 中国生物工程杂志, 2019, 39(5): 72-79.
[7] 朱梦露,王雪雨,刘鑫,路福平,孙登岳,秦慧民. 一种新型亮氨酸5-羟化酶NmLEH的异源表达、纯化及酶学性质分析 *[J]. 中国生物工程杂志, 2019, 39(12): 24-34.
[8] 王彤,徐岩,喻晓蔚. 毕赤酵母Kex2蛋白酶的同源表达及酶学性质 *[J]. 中国生物工程杂志, 2019, 39(1): 38-45.
[9] 郭倩倩,高登科,程晓涛,路福平,田之仓优,秦慧民. 胆固醇氧化酶PsCO4异源表达、纯化及酶学性质分析 *[J]. 中国生物工程杂志, 2018, 38(6): 34-42.
[10] 王男,金吕华,张玲,林荣,杨海麟. 信号肽对亮氨酸脱氢酶在Bacillus subtilis中分泌表达的影响及酶学性质研究[J]. 中国生物工程杂志, 2018, 38(4): 46-53.
[11] 程可利, 刘晓, 李素霞. 对SDS稳定的V8(V125T)蛋白酶突变体的高效表达及性质研究[J]. 中国生物工程杂志, 2017, 37(4): 56-67.
[12] 李雪晴, 袁风娇, 程建青, 董运海, 李剑芳, 邬敏辰. 杂合β-甘露聚糖酶AuMan5Aloop的H321对其酶学性质的影响[J]. 中国生物工程杂志, 2017, 37(2): 48-53.
[13] 王世伟, 王敏, 王卿惠. Rhodococcus ruber CGMCC3090腈水合酶纯化、酶学性质及结晶研究[J]. 中国生物工程杂志, 2017, 37(10): 42-52.
[14] 谢喜珍, 林娟, 谢勇, 叶秀云. 海洋来源琼胶酶的分离纯化及酶学性质研究[J]. 中国生物工程杂志, 2017, 37(1): 46-52.
[15] 吴红丽, 薛勇, 刘健, 甘礼惠, 龙敏南. 乙酰木聚糖酯酶研究进展[J]. 中国生物工程杂志, 2016, 36(3): 102-110.