Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2019, Vol. 39 Issue (7): 15-23    DOI: 10.13523/j.cb.20190703
研究报告     
6-羟基烟酸3-单加氧酶(NicC)催化反应机理研究 *
王菲,胡春辉,于浩()
青岛农业大学生命科学学院 山东省应用真菌重点实验室 青岛 266109
Catalytic Mechanism of 6-Hydroxynicotinic Acid 3-Monooxygenase (NicC)
Fei WANG,Chun-hui HU,hao YU()
Shandong Provincial Key Laboratory of Applied Mycology, College of Life Science, Qingdao Agricultural University, Qingdao 266109, China
 全文: PDF(1142 KB)   HTML
摘要:

恶臭假单胞菌(Pseudomonas putida)KT2440中的6-羟基烟酸(6HNA)3-单加氧酶(NicC)是烟酸代谢过程中的关键酶。NicC通过在吡啶环上加羟基对吡啶环进行活化,从而使吡啶环可在双加氧酶催化下开环,最终被完全降解。通过去除NicC的N端稀有密码子增加了NicC的表达量,进一步利用Ni-Sepharose重力柱对NicC进行了纯化。通过实验发现,NicC的最适反应温度为30~40℃,最适反应pH为8.0。Cd 2+对NicC的酶活有明显的抑制作用。当NADH的浓度为0.25mmol/L时,底物6HNA所对应的NicC的最大酶活为14.1U/mg,Km值为51.8μmol/L;当6HNA的浓度为0.25mmol/L时,底物NADH所对应的NicC的最大酶活为10.79U/mg,Km值为15.0μmol/L。通过HPLC和LC-MS分析表明,NicC可以在NADH和氧气的参与下催化6HNA转化生成2,5-二羟基吡啶(2,5-DHP)和甲酸,还可以将对羟基苯甲酸转化生成对苯二酚。同位素标记实验表明,产物2,5-DHP中的氧原子来源于参与反应的氧气。为研究吡啶类化合物微生物代谢提供了理论基础。

关键词: 6-羟基烟酸3-羟化酶酶学性质催化机制同位素标记    
Abstract:

6-Hydroxynicotinic acid (6HNA) 3-monooxygenase (NicC) is the key enzyme for nicotinic degradation in Pseudomonas putida KT2440. NicC can catalyze the hydroxylation of pyridine ring to promote the ring cleavage reaction of pyridine ring. The expression level of NicC was enhanced by replace the rare codon in the N-terminal of NicC, and then the His-tagged NicC was purified to homogeneity. The optimal temperature reaction range of NicC is from 30℃ to 40℃, and the optimal reaction pH is 8.0. The Cd 2+ could significantly inhibit the activity of NicC. The apparent Km and Vmax values of the purified NicC for 6HNA were 51.8μmol/L and 14.1U/mg, respectively, and those for NADH were 15.0μmol/L and 10.79U/mg, respectively. According to the HPLC and LC-MS analysis, NicC could catalyzes 6HNA to form 2,5-DHP and formic acid, and it could also transform 4-hydroxybenzoic acid to form hydroquinone. Isotope labeling experiments proved that the oxygen atom incorporated into 2,5-DHP is from dioxygen. The study will provide useful information for the microbial degradation of pyridinic compounds.

Key words: 6-Hydroxynicotinic acid 3-monooxygenase    Enzymatic properties    Catalytic mechanism    Isotope labeling experiments
收稿日期: 2018-11-23 出版日期: 2019-08-05
ZTFLH:  Q819  
基金资助: * 国家自然科学基金青年项目(31600086);山东省自然科学基金青年基金资助项目(ZR2016CQ06)
通讯作者: 于浩     E-mail: yuhaosunshine@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王菲
胡春辉
于浩

引用本文:

王菲,胡春辉,于浩. 6-羟基烟酸3-单加氧酶(NicC)催化反应机理研究 *[J]. 中国生物工程杂志, 2019, 39(7): 15-23.

Fei WANG,Chun-hui HU,hao YU. Catalytic Mechanism of 6-Hydroxynicotinic Acid 3-Monooxygenase (NicC). China Biotechnology, 2019, 39(7): 15-23.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20190703        https://manu60.magtech.com.cn/biotech/CN/Y2019/V39/I7/15

图1  NicC进化树分析
图2  NicC蛋白的表达纯化
图3  NicC催化反应的HPLC分析
图4  NADH还原后的还原态NicC的全波长扫描图谱
图5  NicC催化反应的光谱学分析
图6  NicC酶学性质研究
图7  NicC催化PHB转化的HPLC分析
图8  NicC催化反应的同位素标记实验
图9  NicC催化反应的同位素标记实验
[1] Xu P, Yu B, Li F L , et al. Microbial degradation of sulfur, nitrogen and oxygen heterocycles. Trends in Microbiology, 2006,14(9):398-405.
doi: 10.1016/j.tim.2006.07.002
[2] Gerhild S, Lingens F . Bacterial degradation of N-heterocyclic compounds. Biochemistry of Microbial Degradation, 1994, 459-486.
[3] Kaiser J P, Feng Y C, Bollag J M . Microbial metabolism of pyridine, quinoline, acridine,and their derivatives under aerobic and anaerobic conditions. Microbiology Reviews, 1996,60(3):483-498.
[4] Yu H, Tang H Z, Zhu X Y , et al. Molecular mechanism of nicotine degradation by a newly isolated strain,Ochrobactrum sp.Strain SJY1. Applied and Environmental Microbiology, 2015,81(1):272-281.
doi: 10.1128/AEM.02265-14
[5] Yoshida T, Nagasawa T . Enzymatic functionalization of aromatic N-heterocycles: hydroxylation and carboxylation. Journal of Bioscience and Bioengineering, 2000,89(2):111-118.
doi: 10.1016/S1389-1723(00)88723-X
[6] Scriven E F V, Toomey J E, Murugan R . Pyridine and pyridine derivatives. Kirk-Othmer Encyclopedia of Chemical Technology, 2005,20:1-33.
[7] Sims G K, O,Loughlin E J . Degradation of pyridines in the environment. Critical Reviews in Environmental Control, 1989,19(4):309-340.
doi: 10.1080/10643388909388372
[8] Sims J, Lee S . Degradation of pyridine derivatives in soil. Journal of Environmental Quality, 1985,14(4):580-584.
[9] 胡春辉, 徐青, 于浩 . Arthrobacter sp.2PR降解2-羟基吡啶动力学及降解特性研究. 中国生物工程杂志, 2017,37(8):31-38.
Hu C H, Xu Q, Yu H . Characteristics and kinetic study of 2-hydroxypyridine degradation by a novel bacteria Arthrobacter sp.2PR. China Biotechnology, 2017,37(8):31-38.
[10] Jimenez J I, Canales A, Jimenez-Barbero J , et al. Deciphering the genetic determinants for aerobic nicotinic acid degradation:the nic cluster from Pseudomonas putida KT2440. Proc Natl Acad Sci USA, 2008,105(32):11329-11334.
doi: 10.1073/pnas.0802273105
[11] Tang H Z, Wang L J, Wang W W , et al. Systematic unraveling of the unsolved pathway of nicotine degradation in Pseudomonas. PLoS Genetics, 2013,9(10):e1003923.
doi: 10.1371/journal.pgen.1003923
[12] Torimura M, Yoshida H, Kano K , et al. Bioelectrochemical transformation of nicotinic acid into 6-hydroxynicotinic acid on Pseudomonas fluorescens TN5-immobilized column electrolytic flow system. Journal of Molecular Catalysis B:Enzymatic, 2000,8(4):265-273.
doi: 10.1016/S1381-1177(99)00077-6
[13] Zhang Y T, Chen Q, Ji J B , et al. Complete genome sequence of Alcaligenes faecalis strain JQ135, a bacterium capable of efficiently degrading nicotinic acid. Current Microbiology, 2018,75(12):1551-1554.
doi: 10.1007/s00284-018-1486-0
[14] Nakano N, Fujisawa H . Purification,characterization and gene cloning of 6-hydroxynicotinate 3-monooxygenase from Pseudomonas fluorescens TN5. European Journal of Biochemistry, 1999,260(1):120-126.
doi: 10.1046/j.1432-1327.1999.00124.x
[15] Hurh B, Yamane T, Nagasawa T . Purification and characterization of nicotinic acid dehydrogenase from Pseudomonas fluorescens TN5. Journal of Fermentation and Bioengineering, 1994,78(1):19-26.
doi: 10.1016/0922-338X(94)90172-4
[16] Hicks K A, Yuen M E, Feng Z W , et al. Structural and biochemical characterization of 6-hydroxynicotinic acid 3-monooxygenase,a novel decarboxylative hydroxylase involved in aerobic nicotinate degradation. Biochemistry, 2016,55(24):3432-3446.
doi: 10.1021/acs.biochem.6b00105
[17] Treiber N, Schulz G . Structure of 2,6-dihydroxypyridine 3-hydroxylase from a nicotine-degrading pathway. Journal of Molecular Biology, 2008,379(1):94-104.
doi: 10.1016/j.jmb.2008.03.032
[18] Yu Hao, Robert P H, Tang H Z , et al. Mechanism of the 6-hydroxy-3-succinoyl-pyridine 3-monooxygenase flavoprotein from Pseudomonas putida S16. Journal of Biological Chemistry, 2014,289(42):29158-29170.
doi: 10.1074/jbc.M114.558049
[19] Gustafsson C, Govindarajan S, Minshull J . Codon bias and heterologous protein expression. Trends in Biotechnology, 2004,22(7):346-353.
doi: 10.1016/j.tibtech.2004.04.006
[1] 梁爱玲,刘文婷,武攀,李倩,高健,张洁,刘卫东,贾士儒,郑迎迎. 来源于Exophiala aquamarina的新型玉米赤霉烯酮水解酶的性质及底物结合中心关键氨基酸的功能研究*[J]. 中国生物工程杂志, 2021, 41(10): 19-27.
[2] 朱衡,张继福,张云,胡云峰. 环氧交联剂和氨基载体固定化海洋假丝酵母脂肪酶*[J]. 中国生物工程杂志, 2020, 40(5): 57-68.
[3] 马翠萍,刘朵朵,潘炳菊,申会涛,宋亚囝. 来源于嗜碱芽孢杆菌N16-5甘露聚糖利用基因簇的乙酰酯酶AesA的克隆及性质分析*[J]. 中国生物工程杂志, 2020, 40(3): 65-71.
[4] 朱衡,张继福,张云,孙爱君,胡云峰. 聚乙二醇二缩水甘油醚交联氨基载体LX-1000EA固定化脂肪酶 *[J]. 中国生物工程杂志, 2020, 40(1-2): 124-132.
[5] 胡富,李谦,朱本伟,宁利敏,姚忠,孙芸,杜昱光. 石莼多糖裂解酶的研究进展 *[J]. 中国生物工程杂志, 2019, 39(8): 104-113.
[6] 王鑫淼,张康,陈晟,吴敬. 嗜热网球菌纤维二糖差向异构酶在枯草芽孢杆菌中的表达及发酵优化 *[J]. 中国生物工程杂志, 2019, 39(7): 24-31.
[7] 谢玉锋,韩雪梅,路福平. 副干酪乳杆菌β-葡糖苷酶的表达、纯化及酶学性质研究 *[J]. 中国生物工程杂志, 2019, 39(5): 72-79.
[8] 朱梦露,王雪雨,刘鑫,路福平,孙登岳,秦慧民. 一种新型亮氨酸5-羟化酶NmLEH的异源表达、纯化及酶学性质分析 *[J]. 中国生物工程杂志, 2019, 39(12): 24-34.
[9] 王彤,徐岩,喻晓蔚. 毕赤酵母Kex2蛋白酶的同源表达及酶学性质 *[J]. 中国生物工程杂志, 2019, 39(1): 38-45.
[10] 郭倩倩,高登科,程晓涛,路福平,田之仓优,秦慧民. 胆固醇氧化酶PsCO4异源表达、纯化及酶学性质分析 *[J]. 中国生物工程杂志, 2018, 38(6): 34-42.
[11] 王男,金吕华,张玲,林荣,杨海麟. 信号肽对亮氨酸脱氢酶在Bacillus subtilis中分泌表达的影响及酶学性质研究[J]. 中国生物工程杂志, 2018, 38(4): 46-53.
[12] 程可利, 刘晓, 李素霞. 对SDS稳定的V8(V125T)蛋白酶突变体的高效表达及性质研究[J]. 中国生物工程杂志, 2017, 37(4): 56-67.
[13] 李雪晴, 袁风娇, 程建青, 董运海, 李剑芳, 邬敏辰. 杂合β-甘露聚糖酶AuMan5Aloop的H321对其酶学性质的影响[J]. 中国生物工程杂志, 2017, 37(2): 48-53.
[14] 王世伟, 王敏, 王卿惠. Rhodococcus ruber CGMCC3090腈水合酶纯化、酶学性质及结晶研究[J]. 中国生物工程杂志, 2017, 37(10): 42-52.
[15] 谢喜珍, 林娟, 谢勇, 叶秀云. 海洋来源琼胶酶的分离纯化及酶学性质研究[J]. 中国生物工程杂志, 2017, 37(1): 46-52.