Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2020, Vol. 40 Issue (1-2): 124-132    DOI: 10.13523/j.cb.1904041
技术与方法     
聚乙二醇二缩水甘油醚交联氨基载体LX-1000EA固定化脂肪酶 *
朱衡1,2,张继福3,张云1,孙爱君1,胡云峰1,**()
1 中国科学院南海海洋研究所 中国科学院热带海洋生物资源与生态重点实验室 广州 510301
2 中国科学院大学 北京 100049
3 广东省中医院 广州 510120
Immobilization of Lipase Through Cross-linking of Polyethylene Glycol Diglycidyl Ether with Amino Carrier LX-1000EA
ZHU Heng1,2,ZHANG Ji-fu3,ZHANG Yun1,SUN Ai-jun1,HU Yun-feng1,**()
1 CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
2 University of Chinese Academy of Sciences,Beijing 100049,China
3 Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120,China
 全文: PDF(1323 KB)   HTML
摘要:

聚乙二醇二缩水甘油醚(PEGDGE)作为双功能环氧试剂,在实验中被用于交联氨基载体LX-1000EA共价固定化海洋脂肪酶,经过处理后的载体共价固定化脂肪酶具有良好的效果。实验经过单因素初筛和正交试验,得到最佳的交联及固定化条件为0.75%交联剂浓度、交联温度35℃、交联时间3h、载体量1.25g、pH9.0、固定化温度55℃、固定化时间1h。对LX-1000EA-PEGDGE固定化酶与游离酶、戊二醛(GA)交联LX-1000HA-GA的固定化酶进行酶学性质的比较,发现LX-1000EA- PEGDGE固定化酶较游离酶最适反应温度未改变,与LX-1000HA-GA相同的是最适反应pH都由7.0提高为8.0。在最适条件中所测LX-1000EA-PEGDGE酶活达到78.84U/g,固定化改变了游离酶的酸碱耐受性,热稳定性和操作稳定性较游离酶和LX-1000HA-GA固定化酶均有提高。LX-1000EA-PEGDGE的热稳定表现优异,在60℃孵育3h后保留90%酶活;使用5次后仍能残余50%酶活;保存30天酶活仍保留60%。首次使用新型双环氧交联剂PEGDGE交联有机氨基载体共价结合固定化脂肪酶,为更有效的固定化方法提供了技术支持,同时也发现交联剂对固定化酶的性质存在较大影响。

关键词: 聚乙二醇缩水甘油醚氨基载体LX-1000EA脂肪酶固定化酶学性质    
Abstract:

Polyethylene glycol diglycidyl ether (PEGDGE), a double-functional epoxy reagent, was used to covalently immobilize marine lipase through cross-linking amino carrier LX-1000EA. The treated carrier behaved good effect in the covalent immobilization of lipase. After single factor screening and orthogonal experiment, the best conditions of crosslinking and immobilized is 0.75% concentration of crosslinking agent, crosslinking temperature 35℃, crosslinking time 3h, carrier quantity 1.25g, pH 9.0 and immobilization temperature 55℃, immobilization time of 1h. The enzymatic properties of LX-1000EA- PEGDGE immobilized enzyme were compared with that of free enzyme and glutaraldehyde crosslinked immobilized enzyme LX-1000HA-GA. Compared with free enzymes, the optimal reaction temperature of LX-1000EA-PEGDGE immobilized enzyme did not change; and similar with LX-1000HA-GA, the optimal reaction pH increased from 7.0 to 8.0. Under the optimal condition, the enzyme activity of LX-1000EA-PEGDGE reached 78.84U/g. Immobilization changed the acid-base tolerance of lipase, and the thermal stability and the operation stability were improved compared with free enzyme and LX-1000HA-GA immobilized enzyme. The immobilized enzyme exhibited excellent thermal stability,retaining 90% initial enzyme activity after 3h incubation at 60℃; the residual enzyme activity retained 50% of its original activity after 5 times of operation; the residual enzyme activity retained 60% of its original activity after preserved for 30 days at 4℃. The new crosslinking agent PEGDGE and organic amino carrier were combined for the first time to immobilize lipase,which provided technical support for more effective immobilization methods. It was also found that the cross-linking agent had a great impact on the properties of the immobilized enzyme.

Key words: Polyethylene glycol diglycidyl ether    Amino-carrier LX-1000EA    Lipase    Immobilization    Enzymatic property
收稿日期: 2019-04-19 出版日期: 2020-03-27
ZTFLH:  Q814  
基金资助: * 广东省海洋渔业科技攻关与研发方向项目(A201701C12);中国科学院战略性先导科技专项(XDA11030404);中国科学院“科学”号高端用户项目(KEXUE2018G05);广东省自然科学基金(2018A030313151)
通讯作者: 胡云峰     E-mail: yunfeng.hu@scsio.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
朱衡
张继福
张云
孙爱君
胡云峰

引用本文:

朱衡,张继福,张云,孙爱君,胡云峰. 聚乙二醇二缩水甘油醚交联氨基载体LX-1000EA固定化脂肪酶 *[J]. 中国生物工程杂志, 2020, 40(1-2): 124-132.

ZHU Heng,ZHANG Ji-fu,ZHANG Yun,SUN Ai-jun,HU Yun-feng. Immobilization of Lipase Through Cross-linking of Polyethylene Glycol Diglycidyl Ether with Amino Carrier LX-1000EA. China Biotechnology, 2020, 40(1-2): 124-132.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.1904041        https://manu60.magtech.com.cn/biotech/CN/Y2020/V40/I1-2/124

图1  聚乙二醇二缩水甘油醚
图2  固定化脂肪酶制备示意图
序号 (A)载体
量(g)
(B)pH (C)温度
(℃)
(D)时间
(h)
1 1 1 1 1
2 1 2 2 2
3 1 3 3 3
4 2 1 2 3
5 2 2 3 1
6 2 3 1 2
7 3 1 3 2
8 3 2 1 3
9 3 3 2 1
表1  正交试验设计
图3  单因素实验确定交联及固定化条件
序号 载体量(g)(A) pH(B) 温度(℃)(C) 时间(h)(D) 绝对酶活(U/g) 相对酶活(%) 酶活回收率(%)
1 1 7 50 1 23.602 1 36.549 05 8.544 912
2 1 8 55 2 37.849 4 58.673 3 27.461 8
3 1 9 60 3 22.419 3 34.724 0 3.893 0
4 1.25 7 55 3 48.602 1 75.322 6 16.265 1
5 1.25 8 50 1 49.220 4 76.242 8 16.275 3
6 1.25 9 50 2 60.080 6 93.068 8 21.726 4
7 1.5 7 60 2 29.435 4 45.599 9 7.366 67
8 1.5 8 50 3 45.430 1 70.416 0 11.071 6
9 1.5 9 55 1 64.569 8 100 32.365 1
K1 83.871 0 101.639 8 129.113 137.392 5
K2 157.903 2 132.5 151.022 127.365 6
K3 139.435 5 147.069 9 101.075 116.451 6
R 74.032 3 45.430 1 49.946 2 20.940 86
表2  脂肪酶固定化条件优化正交试验结果与分析
影响因素 A(载体量) B(pH) C(温度) D(时间)
K1 U(1+2+3) U(1+4+7) U(1+6+8) U(1+5+9)
K2 U(4+5+6) U(2+5+8) U(2+4+9) U(2+6+7)
K3 U(7+8+9) U(3+6+9) U(3+5+7) U(3+4+8)
R A因素下Umax-Umin B因素下Umax-Umin C因素下Umax-Umin D因素下Umax-Umin
表3  计算过程
图4  游离酶液与固定化酶LX-1000EA-PEGDGE和LX-1000HA-GA的酶学性质比较
[1] 成磊, 李泉, 葛保胜 , 等. 固定化脂肪酶催化花生油转酯化特性研究. 化学与生物工程, 2017,34(12):10-13.
Cheng L, Li Q, Ge B S , et al. Esterification of peanut oil catalyzed by immobilized lipase. Chemical and Biological Engineering, 2017,34(12):10-13.
[2] 舒正玉, 杨江科, 黄瑛 , 等. 生物柴油生产用脂肪酶资源及研发现状. 湖北农业科学, 2007,46(6):1027-1031.
Shu Z Y, Yang J K, Huang Y , et al. Lipase resources and development status in biodiesel production. Hubei Agricultural Science, 2007,46(6):1027-1031.
[3] Noureddini H, Gao X, Philkana R S . Immobilized Pseudomonas cepacia lipase for biodiesel fuel production from soybean oil. Bioresource Technology, 2005,96(7):769-777.
[4] Kaieda M, Samukawa T, Kondo A , et al. Effect of methanol and water contents on production of biodiesel fuel from plant oil catalyzed by various lipases in a solvent-free system. Journal of Bioscience and Bioengineering, 2001,91(1):5-12.
[5] Talekar A, Ghodake V, Ghotage T , et al. Novel magnetic cross-linked enzyme aggregates (magnetic CLEAs) of alpha amylase. Bioresource Technology, 2012,123(2012):542-547.
[6] Di Martino S, El-sheriff H, Diano N , et al. Urea removal from agricultural waste waters by means of urease immobilized on nylon membranes grafted with cyclohexyl-methacrylate. Applied Catalysis B: Environmental, 2004,46(3):613-629.
[7] 唐荣华, 段玮, 陈波 . 京尼平交联磁性壳聚糖微球的制备及其脂肪酶的固定化. 应用化学, 2013,30(8):922-926.
Tang R H, Duan W, Chen B . Preparation of cross-linked magnetic chitosan microspheres and immobilization of lipase. Applied Chemistry, 2013,30(8):922-926.
[8] 陈萧萧, 黄敏玲, 汪薇 , 等. 共固定化酶的制备及其在奶香基料制备中的应用. 食品工业, 2018,39(5):136-141.
Chen X X, Huang M L, Wang W , et al. Preparation of coimmobilized enzyme and its application in the preparation of milk-scented base material. Food Industry, 2018,39(5):136-141.
[9] Ran J Y, Jia S Y, Liu Y , etc. A facile method for improving the covalent crosslinking adsorption process of catalase immobilization. Elsevier Ltd, 2010,101(16):6285-6290.
[10] 张媛媛, 刘均洪, 夏亚穆 . 吸附-聚合物修饰组合固定化Candida antarctica脂肪酶研究. 高校化学工程学报, 2010,24(2):252-257.
Zhang Y Y, Liu J H, Xia Y M . Study on the immobilized lipase of adsorption-polymer modified combination. Acta Chemologica Sinica, 2010,24(2):252-257.
[11] Huang Z X, Cao S L, Xu P , et al. Preparation of a novel nanobiocatalyst by immobilizing penicillin acylase onto magnetic nanocrystalline cellulose and its use for efficient synthesis of cefaclor. Chemical Engineering Journal, 2018,346(2018):361-368.
[12] 孙培龙, 邵平, 孟祥河 , 等. 壳聚糖微球固定化脂肪酶的制备工艺及应用性质研究. 中国粮油学报, 2008,23(4):189-193.
Sun P L, Shao P, Meng X H , et al. Preparation and application of chitosan microsphere immobilized lipase. Chinese Journal of Cereals And Oils, 2008,23(4):189-193.
[13] Melinda M, Kata H, Tibor S , et al. Sensing hydrogen peroxide by carbon nanotube/horseradish peroxidase bio-nanocomposite. Physica Status Solidi (b), 2013,250(12):2559-2563.
[14] Sungur , Sibel , Akbulut , et al. Immobilization of β-galactosidase onto gelatin by glutaraldehyde and chromium(III) acetate. Journal of Chemical Technology and Biotechnology, 1994,59(3):303-306.
[15] Bilal M, Iqbal H M N, Hu H B , et al. Development of horseradish peroxidase-based cross-linked enzyme aggregates and their environmental exploitation for bioremediation purposes. Journal of Environmental Management, 2017,188(2018):137-143.
[16] Bai Y X, li Y F, Wang M T . Study on synthesis of a hydrophilic bead carrier containing epoxy groups and its properties for glucoamylase immobilization. Enzyme and Microbial Technology, 2006,39(4):540-547.
[17] 薛屏, 卢冠忠, 郭杨龙 , 等. 含环氧基亲水性固定化青霉素酰化酶共聚载体的合成与性能研究. 高等学校化学学报, 2004,25(2):361-365.
Xue P, Lu G Z, Guo Y L , et al. Synthesis and performance of a copolymer carrier containing epoxy hydrophilic immobilized penicillin acylase. Acta Chem Sin, 2004,25(2):361-365.
[18] 张玉荣, 刘建勇, 王洁 . 乙二醇二缩水甘油醚交联羊毛角蛋白. 材料导报, 2013,27(21):230-232, 244.
Zhang Y R, Liu J Y, Wang J . glycol diglycidyl ether crosslinked lanolin. Materials Review, 2013,27(21):230-232, 244.
[19] 余舜雷 . 双交联剂体系氨基酰化酶交联聚集体的制备和研究. 天津:天津大学, 2012.
Yu S L . Preparation and study of aminoacylase cross-linked polymers in double-crosslinking agent system. Tianjin: Tianjin University, 2012.
[20] 徐珊, 李任强, 张继福 , 等. 乙二醇缩水甘油醚交联海藻酸钠-羧甲基纤维素钠固定化脂肪酶. 中国生物工程杂志, 2017,37(12):77-83.
Xu S, Li R Q, Zhang J F , et al. Glycidyl ether crosslinked alginate sodium carboxymethyl cellulose sodium immobilized lipase. China Biotechnology, 2017,37(12):77-83.
[21] 林海蛟, 王云鹏, 张云 , 等. 无机载体吸附-交联固定化海洋脂肪酶技术研究. 江西农业大学学报, 2019,41(1):186-196.
Lin H J, Wang Y P, Zhang Y , et al. Study on adsorption-cross-linking immobilization of marine lipase by inorganic carrier. Journal of Jiangxi Agricultural University, 2019,41(1):186-196.
[22] 钱明华, 张继福, 张云 , 等. 大孔树脂吸附-交联法固定脂肪酶. 华南农业大学学报, 2019,40(2):103-110.
Qian M H, Zhang J F, Zhang Y , et al. Immobilization of lipase by macroporous resin-crosslinking method. Journal of South China Agricultural University, 2019,40(2):103-110.
[23] 侯爱军, 徐冰斌, 梁亮 , 等. 改进铜皂分光光度法测定脂肪酶活力. 皮革科学与工程, 2011,21(1):22-27.
Hou A J, Xu B B, Liang L , et al. Determination of lipase activity by improved copper soap spectrophotometry. Leather Science and Engineering, 2011,21(1):22-27.
[24] 朱衡, 林海蛟, 张继福 , 等. 氨基载体共价结合固定化海洋假丝酵母脂肪酶. 中国生物工程杂志, 2019,39(7):71-78.
Zhu H, Lin H J, Zhang J F , et al. Covalent immobilization of marine Candida rugosa lipase using amino carrier. China Biotechnology, 2019,39(7):71-78.
[25] 徐珊, 李任强, 张继福 , 等. 孵育对环氧树脂固定化脂肪酶的稳定性研究. 华南农业大学学报, 2019,40(3):1-6. DOI: 10.7671/j.issn.1001-411X.201807037
doi: 10.7671/j.issn.1001-411X.201807037
Xu S, Li R Q, Zhang J F , et al. Effect of incubation on the stabilization of lipase immobilized by epoxy resin. Journal of South China Agricultural University, 2019,40(3):1-6. DOI: 10.7671/j.issn.1001-411X.201807037.
doi: 10.7671/j.issn.1001-411X.201807037
[1] 陈开通,郑文隆,杨立荣,徐刚,吴坚平. 氨基树脂固定化L-苏氨酸醛缩酶及其应用*[J]. 中国生物工程杂志, 2021, 41(9): 55-63.
[2] 周惠颖,周翠霞,张婷,王雪雨,张会图,冀颐之,路福平. 强化底物利用酶系表达,提升地衣芽孢杆菌生产碱性蛋白酶性能[J]. 中国生物工程杂志, 2021, 41(2/3): 53-62.
[3] 魏子翔,张柳群,雷磊,韩正刚,杨江科. 疏棉状嗜热丝孢菌(Thermomyces lanuginosus)脂肪酶的理性设计提高其活性和温度稳定性[J]. 中国生物工程杂志, 2021, 41(2/3): 63-69.
[4] 杨运松,梁金花,杨晓瑞,马艺鸣,金爽,孙姚瑶,朱建良. 柴油生物酶催化氧化脱硫的研究进展[J]. 中国生物工程杂志, 2021, 41(10): 109-115.
[5] 梁爱玲,刘文婷,武攀,李倩,高健,张洁,刘卫东,贾士儒,郑迎迎. 来源于Exophiala aquamarina的新型玉米赤霉烯酮水解酶的性质及底物结合中心关键氨基酸的功能研究*[J]. 中国生物工程杂志, 2021, 41(10): 19-27.
[6] 朱衡,张继福,张云,胡云峰. 环氧交联剂和氨基载体固定化海洋假丝酵母脂肪酶*[J]. 中国生物工程杂志, 2020, 40(5): 57-68.
[7] 董璐,张继福,张云,胡云峰. 环氧树脂固定化的Bacillus sp. DL-2胞外蛋白酶在拆分(±)-乙酸苏合香酯中的应用 *[J]. 中国生物工程杂志, 2020, 40(4): 49-58.
[8] 马翠萍,刘朵朵,潘炳菊,申会涛,宋亚囝. 来源于嗜碱芽孢杆菌N16-5甘露聚糖利用基因簇的乙酰酯酶AesA的克隆及性质分析*[J]. 中国生物工程杂志, 2020, 40(3): 65-71.
[9] 朱衡,林海蛟,张继福,张云,孙爱君,胡云峰. 氨基载体共价结合固定化海洋假丝酵母脂肪酶 *[J]. 中国生物工程杂志, 2019, 39(7): 71-78.
[10] 王菲,胡春辉,于浩. 6-羟基烟酸3-单加氧酶(NicC)催化反应机理研究 *[J]. 中国生物工程杂志, 2019, 39(7): 15-23.
[11] 王鑫淼,张康,陈晟,吴敬. 嗜热网球菌纤维二糖差向异构酶在枯草芽孢杆菌中的表达及发酵优化 *[J]. 中国生物工程杂志, 2019, 39(7): 24-31.
[12] 巩凤芹,刘启顺,谭海东,金花,谭成玉,尹恒. MOFs固定5-羟甲基糠醛氧化酶及其催化活性的研究 *[J]. 中国生物工程杂志, 2019, 39(6): 41-47.
[13] 谢玉锋,韩雪梅,路福平. 副干酪乳杆菌β-葡糖苷酶的表达、纯化及酶学性质研究 *[J]. 中国生物工程杂志, 2019, 39(5): 72-79.
[14] 林海蛟,张继福,张云,孙爱君,胡云峰. 添加剂对大孔吸附树脂固定化脂肪酶的影响 *[J]. 中国生物工程杂志, 2019, 39(4): 38-51.
[15] 朱梦露,王雪雨,刘鑫,路福平,孙登岳,秦慧民. 一种新型亮氨酸5-羟化酶NmLEH的异源表达、纯化及酶学性质分析 *[J]. 中国生物工程杂志, 2019, 39(12): 24-34.