Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2019, Vol. 39 Issue (12): 24-34    DOI: 10.13523/j.cb.20191204
研究报告     
一种新型亮氨酸5-羟化酶NmLEH的异源表达、纯化及酶学性质分析 *
朱梦露1,2,3,王雪雨1,刘鑫1,路福平1,2,3,孙登岳1,2,3,**(),秦慧民1,2,3,**()
1 1天津科技大学生物工程学院 天津 300457
2 天津科技大学工业发酵微生物教育部重点实验室 天津 300457
3 工业酶国家工程实验室 天津 30045
Heterologous Expression, Purification and Enzymatic Properties of a Novel Leucine 5-Hydroxylase
ZHU Meng-lu1,2,3,WANG Xue-yu1,LIU Xin1,LU Fu-ping1,2,3,SUN Deng-yue1,2,3,**(),QIN Hui-min1,2,3,**()
1 College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
2 Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, China
3 National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, China
 全文: PDF(2273 KB)   HTML
摘要:

羟基化氨基酸是一种新型氨基酸衍生物,可广泛用作化工材料的前体物及医药合成的中间体。将来源于Nostoc minutum的新型L-亮氨酸5-羟化酶 (NmLEH) 通过重组质粒在大肠杆菌中异源表达。结果表明,在BL21(DE3) 宿主细胞中,诱导温度为25℃,IPTG诱导浓度为0.5mmol/L,诱导10h时,蛋白质表达量最高 (0.45mg/ml);通过Ni-亲和层析和凝胶过滤层析两步分离纯化获得了高度纯化的重组NmLEH蛋白;对NmLEH的酶学性质进行了表征,该酶的最适反应温度为25℃,最适pH 为7.5,在pH 7.0~9.0较为稳定,最适底物为亮氨酸和甲硫氨酸;同源序列分析表明NmLEH属于亚铁和α-酮戊二酸依赖性双加氧酶家族[Fe(II)/αKG-Dos],并预测了该酶的保守催化活性位点(H150、D152、H236);通过同源建模得到了该蛋白质的模拟结构,分析了该蛋白质催化活性中心的形成机制。

关键词: 亮氨酸5-羟化酶表达纯化酶学性质底物特异性催化活性中心    
Abstract:

Hydroxyl amino acids are a novel kind of amino acid derivatives, which are widely used as a chemically synthetic intermediate.A novel L-leucine-5-hydroxylase (NmLEH) from Nostoc minutum was cloned and inserted into recombinant plasmid, and its expression conditions were optimized. The results showed that when the enzyme was transferred into the BL21 (DE3) host, the induction temperature was 25℃ and the IPTG induction concentration was 0.5mmol/L, the expression levels of NmLEH was highest after induction of 10 (0.45 mg/ml). Using purification process of Ni-affinity chromatography and gel filtration, highly purified recombinant NmLEH was obtained. The enzymatic properties of NmLEH were characterized, and the optimum reaction temperature of the enzyme was 25℃, and the optimum pH was 7.5; the NmLEH enzyme was active at pH 7.0-9.0, and the optimum substrate for the NmLEH were the leucine and methionine. Sequence alignment and phylogenesis analysis implied that residues of H150, H236 and D152 constitute the catalytic triad of NmLEH, which is completely conserved in the Fe(II)/αKG-dependent dioxygenase [Fe(II)/αKG-Dos] superfamily. The formation mechanism of catalytic active site was analyzed based on NmLEH structural model analysis.

Key words: Leucine 5-hydroxylase    Expression purification    Enzymatic properties    Substrate specificity    Catalytic active site
收稿日期: 2019-04-24 出版日期: 2020-01-15
ZTFLH:  Q814  
基金资助: * 国家自然科学基金(31771911);天津市自然科学基金(16JCQNJC09200);天津市大学生创新创业训练计划项目(1000204)
通讯作者: 孙登岳,秦慧民     E-mail: dysun09@163.com;huiminqin@tust.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
朱梦露
王雪雨
刘鑫
路福平
孙登岳
秦慧民

引用本文:

朱梦露,王雪雨,刘鑫,路福平,孙登岳,秦慧民. 一种新型亮氨酸5-羟化酶NmLEH的异源表达、纯化及酶学性质分析 *[J]. 中国生物工程杂志, 2019, 39(12): 24-34.

ZHU Meng-lu,WANG Xue-yu,LIU Xin,LU Fu-ping,SUN Deng-yue,QIN Hui-min. Heterologous Expression, Purification and Enzymatic Properties of a Novel Leucine 5-Hydroxylase. China Biotechnology, 2019, 39(12): 24-34.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20191204        https://manu60.magtech.com.cn/biotech/CN/Y2019/V39/I12/24

图1  L-亮氨酸和L-甲硫氨酸催化反应示意图
时间(min) 流动相A-B 比例
0.00 100∶0
10 95∶5
20 90∶10
30 83∶17
45 62∶38
55 50∶50
60 38∶62
65 10∶90
70 0∶100
表1  梯度洗脱程序
图2  NmLEH菌落PCR和酶切验证
图3  不同诱导条件下可溶性蛋白的浓度
图4  NmLEH蛋白纯化示意图
图5  温度对NmLEH酶活和热稳定性的影响
图6  pH对NmLEH酶活和催化稳定性的影响
Substrate km(mmol/L) Kcat(s-1) Kcat/km
[mmol/(L·s)]
L-leucine 1.35±0.08 15.37±0.84 12.81
L-methionine 2.52±0.07 9.87±0.46 4.29
表2  NmLEH酶动力学参数
Amino acids Specific activity
(U/mg)
Relative activity
(%)
L-Leucine 148.55±1.95 100.00
L-Valine 13.21±0.37 12.03
L-Arginine 49.36±1.84 37.34
L-Lysine n.d. n.d.
L-Isoleucine 69.24±1.22 53.21
L-Proline 5.01±0.21 2.98
L-Methionine 183.23±2.88 119.34
L-Phenylalanine n.d. n.d.
表3  NmLEH的底物选择性
图7  酶辅因子对NmLEH活性的影响
图8  HPLC检测亮氨酸催化产物
图9  NmLEH氨基酸序列比对
图10  NmLEH系统树分析
图11  NmLEH模拟结构及活性中心示意图
[1] 王洪荣, 季昀 . 氨基酸的生物活性及其营养调控功能的研究进展. 动物营养学报, 2013,25(3):447-457.
Wang H R, Ji J . Advances in studies on biological activities of amino acids and their nutritional regulation. Journal of Animal Nutrition, 2013,25(3):447-457.
[2] Qin H M, Miyakawa T, Jia M , et al. Crystal structure of a novel N-substituted L-amino acid dioxygenase from Burkholderia ambifaria AMMD. PLoS One, 2013,8(5):e63996.
[3] Blaskovich M, Evindar G, Rose N , et al. Stereoselective synjournal of threo and erythro β-hydroxy and β-disubstituted-β-hydroxy α-amino acids. The Journal of Organic Chemistry, 1998,63(11):3631-3646.
[4] Remuzon P . Trans-4-hydroxy-L-proline, a useful and versatile chiral starting block. Tetrahedron, 1996,52(44):13803-13835.
[5] Broca C, Gross R, Petit P , et al. 4-Hydroxyisoleucine: experimental evidence of its insulinotropic and antidiabetic properties. American Journal of Physiology-Endocrinology and Metabolism, 1999,277(4):617-623.
[6] Sun D Y, Gao D K, Xu P P , et al. A novel l-leucine 5-hydroxylase from Nostoc piscinale unravels unexpected sulfoxidation activity toward l-methionine. Protein Expression and Purification, 2018,149(1):1-6.
[7] Hausinger R P . Fe(II)/α-ketoglutarate-dependent hydroxylases and related enzymes. Critical Reviews in Biochemistry and Molecular Biology, 2004,39(1):21-68.
[8] Koehntop K D, Emerson J P, Que L , et al. The 2-His-1-carboxylate facial triad: a versatile platform for dioxygen activation by mononuclear non-heme iron(II)enzymes. Journal of Biological Inorganic Chemistry, 2005,10(2):87-93.
[9] McDonough M A, Loenarz C, Chowdhury R , et al. Structural studies on human 2-oxoglutarate dependent oxygenases. Current Opinion in Structural Biology, 2010,20(6):659-672.
[10] Rose N R, McDonough M A, King O N , et al. Inhibition of 2-oxoglutarate dependent oxygenases. Chemical Society Reviews, 2010,40(8):4364-4397.
[11] Hibi M, Kawashima T, Kodera T , et al. Characterization of Bacillus thuringiensis L-isoleucine dioxygenase for production of useful amino acids. Applied Microbiology and Biotechnology, 2011,77(19):6926-6930.
[12] Schmid A, Dordick J, Hauer B , et al. Industrial biocatalysis today and tomorrow. Nature, 2001,409(6817):258-268.
[13] 文方, 聂尧, 穆晓清 , 等. α-酮戊二酸依赖型双加氧酶催化特性及反应耦联辅因子对其催化羟基化反应的影响. 微生物学通报, 2017,44(3):505-507.
Weng F, Nie Y, Mu X Q , et al. Catalytic properties of α-ketoglutarate-dependent dioxygenase and effects of coupling cofactors on its catalytic hydroxylation. Microbiology Bulletin, 2017,44(3):505-507.
[14] Navnath B K, Kasture V M, Dhavale D D , et al. Total synjournal of natural cis-3-hydroxy-L-proline from D-glucose. Tetrahedron Letters, 2010,51(51):6745-6747.
[15] Matsuoka T, Serizawa N, Hosoya T , et al. Isolated cultures of microorganism of Clonostachys cylindrospora, Gliocladium and Nectria gliocladioides.United States Patent,5407826. 1995-04-18[2019-01-12]. .
[16] Tan E M L, Ryh?nen L U . Proline analogues inhibit human skin fibroblast growth and collagen production in culture. Journal of Investigative Dermatology, 1983,80(4):261-267.
[17] Eldridge C F, Bunge R P, Bunge M B . Effect of cis-4-hydroxy-Lproline, an inhibitor of Schwann cell differentiation, on the secretion of collagens and noncollagenous protein by Schwann cells. Experimental Cell Research, 1988,174(2):491-501.
[18] Kodera T, Smirnov S V, Samsonova N N , et al. A novel l-isoleucine hydroxylating enzyme, l-isoleucine dioxygenase from Bacillus thuringiensis, produces (2S,3R,4S)-4-hydroxyisoleucine. Biochemical and Biophysical Research Communications, 2009,390(3):506-510.
[19] Palomo C, Arrieta A, Cossío F P , et al. Highly stereoselective synjournal of α-hydroxy β-amino acids through β-lactams: application to the synjournal of the taxol and bestatin side chains and related systems. Tetrahedron Letters, 1990,31(44):6429-6432.
[20] Martinez S, Hausinger R P . Catalytic mechanisms of Fe(II)- and 2-oxoglutaratedependent oxygenases. The Journal of Biological Chemistry, 2015,290(34):20702-20711.
[21] Purpero V, Moran G R . The diverse and pervasive chemistries of the α-keto acid dependent enzymes, Journal of Biological Inorganic Chemistry. 2007,12(5):587-601.
[22] 刘均洪, 吴小飞, 李凤梅 , 等. 加氧酶催化生物转化研究最新进展. 化工生产与技术, 2006,13(4):36.
Liu J H, Wu X F, Li F M , et al. Recent advances in oxygenation-catalyzed biotransformation research. Chemical production and technology, 2006,13(4):36.
[23] Hara R, Kino K . Characterization of novel 2-oxoglutarate dependent dioxygenases converting L-proline to cis-4-hydroxy-Lproline. Biochemical and Biophysical Research Communications, 2009,379(4):882-886.
[24] Bach T M H, Hara R, Kino K , et al. Microbial production of N-acetyl cis-4-hydroxy-L-proline by coexpression of the Rhizobium L-proline cis-4-hydroxylase and the yeast N-acetyltransferase Mpr1. Applied Microbiology and Biotechnology, 2013,97(1):247-257.
[25] Hibi M, Kawashima J, Sokolov P M , et al. L-Leucine 5-hydroxylase of Nostoc punctiforme is a novel type of Fe(II)/α-ketoglutarate-dependent dioxygenase that is useful as a biocatalyst. Applied Microbiology and Biotechnology, 2015,97(6):2467-2472.
[26] Correia C, Enoki J, Busch F , et al. Cloning and characterization of a new delta-specific L-leucine dioxygenase from Anabaena variabilis. Journal of Biotechnology, 2018,284(20):68-74.
[27] Aik W ,McDonough M A, Thalhammer A , et al. Role of the jelly-roll fold in substrate binding by 2-oxoglutarate oxygenases. Current Opinion in Structural Biology, 2012,22(6):691-700.
[28] Clifton I J ,McDonough M A,Ehrismann D, et al. Structural studies on 2-oxoglutarate oxygenases and related double-stranded β-helix fold proteins. Journal of Inorganic Biochemistry, 2006,100(4):644-669.
[29] Hibi M, Kasahara T, Kawashima T , et al. Multi-enzymatic synjournal of optically pure β-hydroxy α-amino acids. Advanced Synjournal & Catalysis, 2015,357(4):767-774.
[30] 孙登岳, 程晓涛, 郭倩倩 , 等. 疏水性氨基酸的羟基化研究进展. 生物工程学报, 2018,34(7):1046-1056.
Sun D Y, Cheng X T, Guo Q Q , et al. Progress in hydroxylation of hydrophobic amino acids. Journal of Bioengineering, 2018,34(7):1046-1056.
[1] 梁爱玲,刘文婷,武攀,李倩,高健,张洁,刘卫东,贾士儒,郑迎迎. 来源于Exophiala aquamarina的新型玉米赤霉烯酮水解酶的性质及底物结合中心关键氨基酸的功能研究*[J]. 中国生物工程杂志, 2021, 41(10): 19-27.
[2] 蒋丹丹,王云龙,李玉林,张怡青. 含RGD修饰的病毒样颗粒递送ICG靶向肿瘤的研究 *[J]. 中国生物工程杂志, 2020, 40(7): 22-29.
[3] 朱衡,张继福,张云,胡云峰. 环氧交联剂和氨基载体固定化海洋假丝酵母脂肪酶*[J]. 中国生物工程杂志, 2020, 40(5): 57-68.
[4] 马翠萍,刘朵朵,潘炳菊,申会涛,宋亚囝. 来源于嗜碱芽孢杆菌N16-5甘露聚糖利用基因簇的乙酰酯酶AesA的克隆及性质分析*[J]. 中国生物工程杂志, 2020, 40(3): 65-71.
[5] 朱衡,张继福,张云,孙爱君,胡云峰. 聚乙二醇二缩水甘油醚交联氨基载体LX-1000EA固定化脂肪酶 *[J]. 中国生物工程杂志, 2020, 40(1-2): 124-132.
[6] 王菲,胡春辉,于浩. 6-羟基烟酸3-单加氧酶(NicC)催化反应机理研究 *[J]. 中国生物工程杂志, 2019, 39(7): 15-23.
[7] 王鑫淼,张康,陈晟,吴敬. 嗜热网球菌纤维二糖差向异构酶在枯草芽孢杆菌中的表达及发酵优化 *[J]. 中国生物工程杂志, 2019, 39(7): 24-31.
[8] 谢玉锋,韩雪梅,路福平. 副干酪乳杆菌β-葡糖苷酶的表达、纯化及酶学性质研究 *[J]. 中国生物工程杂志, 2019, 39(5): 72-79.
[9] 景佳美,徐欣,王敏,彭如超,施一. 沙粒病毒聚合酶C端的表达纯化与结晶条件筛选 *[J]. 中国生物工程杂志, 2019, 39(12): 18-23.
[10] 王彤,徐岩,喻晓蔚. 毕赤酵母Kex2蛋白酶的同源表达及酶学性质 *[J]. 中国生物工程杂志, 2019, 39(1): 38-45.
[11] 郭倩倩,高登科,程晓涛,路福平,田之仓优,秦慧民. 胆固醇氧化酶PsCO4异源表达、纯化及酶学性质分析 *[J]. 中国生物工程杂志, 2018, 38(6): 34-42.
[12] 王男,金吕华,张玲,林荣,杨海麟. 信号肽对亮氨酸脱氢酶在Bacillus subtilis中分泌表达的影响及酶学性质研究[J]. 中国生物工程杂志, 2018, 38(4): 46-53.
[13] 李诗洁,杨艳坤,刘萌,白仲虎,金坚. SUMO蛋白酶Ulp1的高效表达纯化并通过His-SUMO标签制备scFv *[J]. 中国生物工程杂志, 2018, 38(3): 51-61.
[14] 程可利, 刘晓, 李素霞. 对SDS稳定的V8(V125T)蛋白酶突变体的高效表达及性质研究[J]. 中国生物工程杂志, 2017, 37(4): 56-67.
[15] 李雪晴, 袁风娇, 程建青, 董运海, 李剑芳, 邬敏辰. 杂合β-甘露聚糖酶AuMan5Aloop的H321对其酶学性质的影响[J]. 中国生物工程杂志, 2017, 37(2): 48-53.