Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2017, Vol. 37 Issue (4): 56-67    DOI: 10.13523/j.cb.20170408
研究报告     
对SDS稳定的V8(V125T)蛋白酶突变体的高效表达及性质研究
程可利1, 刘晓2, 李素霞1
1 华东理工大学生物反应器工程国家重点实验室 上海 200237;
2 上海雅心生物技术有限公司 上海 201108
Study on High-level Expression and Characterization of a V125T V8 Protease Mutant with Tolerance to SDS
CHENG Ke-li1, LIU Xiao2, LI Su-xia1
1 East China University of Science and Technology, State Key Laboratory of Bioreactor Engineering, Shanghai 200237, China;
2 Shanghai Yaxin Biotechnology Co., Ltd, Shanghai 201108, China
 全文: PDF(1287 KB)   HTML
摘要: 谷氨酰内切酶能特异性切割谷氨酸、天冬氨酸残基羧基端结合的肽键。将含有V8蛋白酶突变体(V125T)基因的表达质粒的重组大肠杆菌BL21(DE3),在50 L发酵罐中发酵,融合蛋白为可溶性表达,可得菌湿重50 g/L,相对蛋白表达量为33%。融合蛋白采用GST亲和纯化、肠激酶激活、DEAE-FF阴离子交换层析,得到纯的V8(V125T)突变体,经纯化后可获得0.998 mg蛋白/g菌(湿重),比活为13.47 U/mg pro.纯化过程的酶活回收率达到了97.9%。对纯酶进行酶学性质分析,以Z-Phe-Leu-Glu-pNA作为底物测得V8(V125T)蛋白酶的Km为0.339 mmol/L,Vmax为16.642 μmol/min。其最适pH为8.0,在pH4.0~10.0之间较稳定;最适反应温度在45 ℃,12 h内在4~35℃有很好的温度稳定性;25 ℃条件下1 mmol/L的金属离子对酶具有不同程度的影响,其中Fe3+的抑制作用最强;2 mol/L尿素及1 mmol/L EDTA对酶活性无影响,在0.1% SDS中保存12 h、在0.5% SDS中4 h和在1% SDS中1 h,活性均能维持90%以上,在0.5%,0.1% SDS保存12 h,仍能保持80%和64%的活性,与未突变的重组V8蛋白酶相比,该突变体对SDS的耐受性得到极大提高。
关键词: 重组V8蛋白酶纯化稳定性SDS耐受性酶学性质突变体    
Abstract: Glutamyl endopeptidase enzyme can cleave specifically the peptide bonds on the carboxyl-terminal side of aspartate and glutamate residues. The gene of V8 (V125T) protease mutant was cloned into plasmid pGEX-4T-3 and then the recombinant plasmid was transformed into E. coli BL21 (DE3). After the fermentation in 50 L fermenter, 50 g/L wet cell was obtained, and the fusion protein was expressed as soluble one, the ratio of expressed aim protein reached to 33%. The fusion protein was purified with GST affinity column, activated by enterokinase, purified with anion-exchange chromatography DEAE-FF, 0.998mg purified aim protein per gram wet cell was obtained, the specific activity was 13.47 U/mg pro. with Z-Phe-Leu-Glu-pNA as a substrate. The total activity recovery rate was 97.9%. The values of Km and Vmax of the recombinant V8(V125T) mutant were 0.339 mmol/L and 16.642 μmol/min respectively. The optimum pH was pH8.0 and was stable from pH4.0 to pH 10.0. The optimum temperature was 45℃, and the protease was stable from 4℃ to 35℃ after incubated for 12 h. At 25℃, the protease activity was affected by some 1 mmol/L metal ions, especially by Fe3+ metal ion. The enzyme activity was not affected by 2 mol/L urea and 1 mmol/L EDTA. More than 90% of total activity was kept when it was in 0.1% SDS for 12 h, in 0.5% SDS for 4 h or in 1% SDS for 1 h. The residual activity still was 80% in 0.5% SDS for 12 h and 64% in 1% SDS for 12 h. The tolerance of recombinant V8(V125T) mutant to SDS was vastly improved compared with the wild-type recombinant V8 protease.
Key words: Mutant    Stability    Enzyme properties    Recombinant V8 protease    Purification    Tolerance to SDS
收稿日期: 2016-11-17 出版日期: 2017-04-25
ZTFLH:  Q786  
通讯作者: 李素霞     E-mail: lisuxia@ecust.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
程可利
李素霞
刘晓

引用本文:

程可利, 刘晓, 李素霞. 对SDS稳定的V8(V125T)蛋白酶突变体的高效表达及性质研究[J]. 中国生物工程杂志, 2017, 37(4): 56-67.

CHENG Ke-li, LIU Xiao, LI Su-xia. Study on High-level Expression and Characterization of a V125T V8 Protease Mutant with Tolerance to SDS. China Biotechnology, 2017, 37(4): 56-67.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20170408        https://manu60.magtech.com.cn/biotech/CN/Y2017/V37/I4/56

[1] Mil'Gotina E I, Voyushina T L, Chestukhina G G. Glutamyl endopeptidases:structure, function, and practical application. Russian Journal of Bioorganic Chemistry, 2003, 29(6):511-522.
[2] Drapeau G R, Boily Y, Houmard J. Purification and properties of an extracellular protease of Staphylococcus aureus. Journal of Biological Chemistry, 1972, 247(20):6720-6726.
[3] Houmard J, Drapeau G R. Staphylococcal protease:a proteolytic enzyme specific for glutamyl bonds. Proceedings of the National Academy of Sciences, 1973, 69(12):3506-3509.
[4] Svendsen I, Jensen M R, Breddam K. The primary structure of the glutamic acid-specific protease of Streptomyces griseus. Febs Letters, 1991, 292(1-2):165-167.
[5] Balaban N P, Mardanova A M, Sharipova M R, et al. Isolation and characterization of glutamyl endopeptidase 2 from Bacillus intermedius, 3-19. Biochemistry Biokhimiia, 2003, 68(11):1217-1224.
[6] Gasanov E V, Demidyuk I V, Shubin A V, et al. Hetero-and auto-activation of recombinant glutamyl endopeptidase from Bacillus intermedius. Protein Engineering Design & Selection, 2008, 21(11):653-658.
[7] Yoshikawa K, Tsuzuki H, Fujiwara T, et al. Purification, characterization and gene cloning of a novel glutamic acid-specific endopeptidase from Staphylococcus aureus, ATCC 12600. Biochimica et Biophysica Acta, 1992, 1121(1):221-228.
[8] Ohara-Nemoto Y, Ikeda Y, Kobayashi M, et al. Characterization and molecular cloning of a glutamyl endopeptidase from Staphylococcus epidermidis. Microbial Pathogenesis, 2002, 33(33):33-41.
[9] Park J W, Park J E, Park J K, et al. Purification and biochemical characterization of a novel glutamyl endopeptidase secreted by a clinical isolate of Staphylococcus aureus. International Journal of Molecular Medicine, 2011, 27(5):637-645.
[10] Yabuta M, Ochi N, Ohsuye K. Hyperproduction of a recombinant fusion protein of Staphylococcus aureus, V8 protease in Escherichia coli, and its processing by OmpT protease to release an active V8 protease derivative. Applied Microbiology and Biotechnology, 1995, 44(1):118-125.
[11] Ono T, Nemoto T K, Yu S, et al. An Escherichia coli, expression system for glutamyl endopeptidases optimized by complete suppression of autodegradation. Analytical Biochemistry, 2008, 381(1):74-80.
[12] Nemoto T K, Ohara-Nemoto Y, Ono T, et al. Characterization of the glutamyl endopeptidase from Staphylococcus aureus, expressed in Escherichia coli. Febs Journal, 2008, 275(3):573-587.
[13] 朱蓓霖,周杰,汪正华,等.地衣芽孢杆菌谷氨酰内切酶的克隆表达与性质研究. 中国生物工程杂志, 2013, 33(3):105-110. Zhu B L,Zhou J,Wang Z H,et al.Cloning and characterization of Bacillus licheniformis glutamys endopetptidase.China Biotechnology, 2013, 33(3):105-110.
[14] 李礼,吴亮,陈盛霞,等.谷氨酰内切酶的原核表达及生物化学特性分析.临床检验杂志, 2012, 30(4):274-277. Li L,Wu L,Chen S X,et al. Prokaryotic expression and biochemical characteristics of glutamyl endopeptidase.Chinese Journal of Clinical Laboratory Science, 2012, 30(4):274-277.
[15] 段树燕,郭怀祖,李晶,等.重组GluV8的克隆表达、纯化及酶学性质研究.中国生物工程杂志, 2014, 34(4):36-40. Duan S Y,Guo H Z,Li J,et al. Cloning,expression,purification,and characterization of recombinant GluV8. China Biotechnology,2014,34(4):36-40.
[16] 李礼,姜旭淦.谷氨酰内切酶的催化特性研究与应用进展.江苏大学学报(医学版), 2012, 22(1):83-85. Li L,Jiang X G. Advances in research and application of catalytic properties of glutamyl endopeptidase.Journal of Jiangsu University (Medicine Education), 2012, 22(1):83-85.
[17] Mil'Gotina E I, Voyushina T L, Chestukhina G G. Glutamyl endopeptidases:structure, function, and practical application. Russian Journal of Bioorganic Chemistry, 2003, 29(6):511-522.
[18] Petr P, Marie T, Zdenka K. Immobilized endoproteinase Glu-C to magnetic bead cellulose as a tool in proteomic analysis. Journal of Separation Science, 2013, 36(12):2043-2048.
[19] Yabuta M, Ohsuye K. Mutant Staphylococcus aureus V8 proteases.EP,96303939,1.1996-12-04.
[20] Yabuta M, Ohsuye K. Increase in urea-resistance of recombinant V8 protease by combining mutations, and its application in the releasing of a peptide hormone from a fusion protein. Journal of Fermentation and Bioengineering, 1995, 80(5):467-472.
[21] Yabuta M, Onai-Miura S, Ohsuye K. Isolation and characterization of urea-resistant Staphylococcus aureus, V8 protease derivatives. Journal of Fermentation & Bioengineering, 1995, 80(3):237-243.
[22] Carmona C, Gray G L. Nucleotide sequence of the serine protease gene of Staphylococcus aureus, strain V8. Nucleic Acids Research, 1987, 15(16):6757-6757.
[23] Prasad L, Leduc Y, Hayakawa K, et al. The structure of a universally employed enzyme:V8 protease from Staphylococcus aureus. Acta Crystallographica Section D, 2004, 60(2):256-259.
[24] 王芳. 重组大肠杆菌高效生产可溶性的人β防御素.杭州:浙江大学, 2004. Wang F. Efficient production of soluble human beta-defensin in recombinant E.coli systems.Hangzhou:Zhejiang University,2004.
[25] 饶胜其.降血压活性肽的筛选及其前体多肽的设计、克隆表达与活性鉴定.无锡:江南大学,2011. Rao S Q.Screening of antihypertensive peptide and design,cloning,expression and activity identification of its precursor polypeptide.Wuxi:Jiangnan University,2011.
[26] Fathallah M D, Rabhi-Essafi I. Method for the production of high-level soluble human recombinant interferon alpha in E. coli and vectors useful for such a production.US, 07290712,4. 2008-12-10.
[1] 张玲,曹小丹,杨海旭,李文蕾. 连续流层析技术在亲和层析中的应用及生产放大评估[J]. 中国生物工程杂志, 2021, 41(6): 38-44.
[2] 陈中伟,郑璞,陈鹏程,吴丹. 耐热植酸酶突变体的筛选及性质研究 *[J]. 中国生物工程杂志, 2021, 41(2/3): 30-37.
[3] 魏子翔,张柳群,雷磊,韩正刚,杨江科. 疏棉状嗜热丝孢菌(Thermomyces lanuginosus)脂肪酶的理性设计提高其活性和温度稳定性[J]. 中国生物工程杂志, 2021, 41(2/3): 63-69.
[4] 明玥,赵自通,王鸿磊,梁志宏. 基于序列和结构分析的酶热稳定性改造策略*[J]. 中国生物工程杂志, 2021, 41(10): 100-108.
[5] 梁爱玲,刘文婷,武攀,李倩,高健,张洁,刘卫东,贾士儒,郑迎迎. 来源于Exophiala aquamarina的新型玉米赤霉烯酮水解酶的性质及底物结合中心关键氨基酸的功能研究*[J]. 中国生物工程杂志, 2021, 41(10): 19-27.
[6] 陈东,李程程,史仲平. 植物乳杆菌胞外多糖包覆的高稳定性硒纳米颗粒的制备及其抗氧化活性的研究*[J]. 中国生物工程杂志, 2020, 40(9): 18-27.
[7] 吕一凡,李更东,薛楠,吕国梁,时邵辉,王春生. LbCpf1基因的原核表达、纯化与体外切割检测 *[J]. 中国生物工程杂志, 2020, 40(8): 41-48.
[8] 蒋丹丹,王云龙,李玉林,张怡青. 含RGD修饰的病毒样颗粒递送ICG靶向肿瘤的研究 *[J]. 中国生物工程杂志, 2020, 40(7): 22-29.
[9] 谢航航,白红妹,叶超,陈永俊,袁明翠,马雁冰. 易发生聚集的重组HBcAg病毒样颗粒的纯化*[J]. 中国生物工程杂志, 2020, 40(5): 40-47.
[10] 位薇,常保根,王英,路福平,刘夫锋. Tau蛋白核心片段306~378的异源表达、纯化及聚集特性验证*[J]. 中国生物工程杂志, 2020, 40(5): 22-29.
[11] 朱衡,张继福,张云,胡云峰. 环氧交联剂和氨基载体固定化海洋假丝酵母脂肪酶*[J]. 中国生物工程杂志, 2020, 40(5): 57-68.
[12] 刘珍珍,田大勇. 狂犬病疫苗蔗糖密度梯度离心纯化工艺开发 *[J]. 中国生物工程杂志, 2020, 40(4): 25-33.
[13] 马翠萍,刘朵朵,潘炳菊,申会涛,宋亚囝. 来源于嗜碱芽孢杆菌N16-5甘露聚糖利用基因簇的乙酰酯酶AesA的克隆及性质分析*[J]. 中国生物工程杂志, 2020, 40(3): 65-71.
[14] 赵晓艳,陈允妲,章雅倩,吴晓玉,王飞,陈金印. Myxococcus sp.V11海藻糖合酶TreS II分子改造 *[J]. 中国生物工程杂志, 2020, 40(3): 79-87.
[15] 朱彤彤,杨磊,刘应保,孙文秀,张修国. 辣椒疫霉PcCRN20-C蛋白的表达纯化及结晶 *[J]. 中国生物工程杂志, 2020, 40(1-2): 116-123.