Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2019, Vol. 39 Issue (5): 72-79    DOI: 10.13523/j.cb.20190508
研究报告     
副干酪乳杆菌β-葡糖苷酶的表达、纯化及酶学性质研究 *
谢玉锋1,2,韩雪梅1,路福平1,**()
1 省部共建食品营养与安全国家重点实验室 天津科技大学生物工程学院 天津 300457
2 哈尔滨学院食品工程学院 哈尔滨 150086
Expression, Purification and Enzymatic Properties of β-glucosidase from Lactobacillus paracasei
Yu-feng XIE1,2,Xue-mei HAN1,Fu-ping LU1,**()
1 State Key Laboratory of Food Nutrition and Safety, College of Biotechnology,Tianjin University of Science & Technology, Tianjin 300457, China
2 College of Food Science and Engineering, Harbin University, Harbin 150086,China
 全文: PDF(902 KB)   HTML
摘要:

为了实现糖苷类物质的高效转化,将来源于副干酪乳杆菌(Lactobacillus paracasei)TK1501 β-葡糖苷酶基因连接于表达载体pET28a(+)上,在E. coli BL21中表达,重组酶经镍离子亲和层析分离得到纯酶,其分子质量和比酶活分别为86.63kDa和675.56U/mg。最适作用温度和pH分别为30℃和6.5。 Mg 2+和Ca 2+对β-葡糖苷酶酶活抑制作用最小,Cu 2+几乎使其丧失催化活性。其底物特异性较宽泛,对大豆异黄酮、栀子苷、水杨苷、七叶苷、虎杖苷、熊果苷均有降解作用。以β-pNPG为底物时,该酶的KmVmax分别为1.44mmol/L和58.32mmol/(L·s),催化系数kcat为3 982/s。结果与分析表明,来源于副干酪乳杆菌TK1501 β-葡糖苷酶对水解大豆异黄酮和合成糖苷将会发挥重要作用。

关键词: 副干酪乳杆菌β-葡糖苷酶纯化酶学性质    
Abstract:

To improve the conversion efficiency of glucoside to small molecule compounds, the gene encoded β-glucosidase from Lactobacillus paracasei TK1501 was inserted into pET28a(+), and further transformed into E. coli BL21(DE3) for heterologous expression. The recombinant enzyme, which purified by nickel affinity chromatography, is conferred with the high specific activity of 675.56U/mg, and the molecular weight of 86.63kDa.The biochemical characterization of this recombinant enzyme shows that it exhibit the highest bio-activity in 30℃ and pH of 6.5, and the β-glucosidase activity was barely inhibited by Mg 2+ and Ca 2+, but largely by Cu 2+ with even no catalytic activity. It was also found that this enzyme possess a broad substrates specificity toward genistin, daidzin, daidzein, geniposide, salicin, heptosporin, polydatin and arbutin. Finally, The kinetics characteristics shows that Km and Vmax of this enzyme are 1.44mmol/L and 58.32mmol/(L·s), respectively, and the catalytic coefficient (kcat) is 3 982/s using β-pNPG as the substrate. The all results above show that the β-Glucosidases from Lactobacillus paracasei TK1501 play important roles in the process of hydrolysis of soybean isoflavone and synthesis of glycosides.

Key words: Lactobacillus paracasei    β-glucosidase    Purification    Enzymatic properties
收稿日期: 2018-10-15 出版日期: 2019-06-04
ZTFLH:  Q814  
基金资助: * 宁夏回族自治区重点研发计划(2018BBF02008);国家级大学生创新创业训练计划资助项目(201810234004)
通讯作者: 路福平     E-mail: lfp@tust.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
谢玉锋
韩雪梅
路福平

引用本文:

谢玉锋,韩雪梅,路福平. 副干酪乳杆菌β-葡糖苷酶的表达、纯化及酶学性质研究 *[J]. 中国生物工程杂志, 2019, 39(5): 72-79.

Yu-feng XIE,Xue-mei HAN,Fu-ping LU. Expression, Purification and Enzymatic Properties of β-glucosidase from Lactobacillus paracasei. China Biotechnology, 2019, 39(5): 72-79.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20190508        https://manu60.magtech.com.cn/biotech/CN/Y2019/V39/I5/72

图1  β-葡糖苷酶基因PCR产物的鉴定
图2  酶切验证重组质粒
图3  纯化GLU-1的SDS-PAGE
图4  温度对β-葡糖苷酶的酶活力影响
图5  β-葡糖苷酶的热稳定性
图6  pH对β-葡糖苷酶的酶活力影响
图7  β-葡糖苷酶的pH稳定性
图8  金属离子对β-葡糖苷酶酶活的影响
图9  β-葡糖苷酶的动力学曲线
图10  底物结构式
图11  底物选择性高效液相图
底物 Km
(mmol/L)
kcat
(/s)
kcat/Km
[mmol/(L·s)]
相对酶活
(%)
pNPG 1.44±0.08 3982±14 2765 100
Geniposide 2.87±0.05 2520±23 878 35±1.5
Salicin 2.25±0.01 2973±88 1320 47±1.8
Polydatin 5.71±0.10 1728±45 302 16±0.6
Heptaside 3.61±0.08 2207±38 611 25±0.9
Arbutin 1.92±0.03 3569±72 1858 52±1.4
表1  不同底物的β-葡糖苷酶动力学参数
图12  β-葡糖苷酶水解和合成反应对比
[1] James R, Bancha M, Supaporn B , et al. β-Glucosidases: Multitasking,moonlighting or simply misunderstood. Plant Science, 2015,24(1):246-259.
[2] 郑芳芳, 王金佩, 林宇, 等. 链霉菌GXT6 β-葡萄糖苷酶的酶学性质及葡萄糖耐受性分子改造. 微生物学报, 2018,58(10):1839-1852.
Zheng F F, Wang J P, Lin Y , et al. Characterization of β-glucosidase from Streptomyces sp. GXT6 and its molecular modification of glucose tolerance. Acta Microbiologica Sinica, 2018,58(10):1839-1852.
[3] 王锐丽 . 嗜热菌β-葡萄糖苷酶 A水解大豆异黄酮的研究. 安徽农学通报, 2016,22(18):26-28.
Wang R L . Hydrolysis of soybean isoflavone by β-glucosidases A from Thermoanaerobacter etholicus. Anhui Agricultural Science Bulletin, 2016,22(18):26-28.
[4] Messina M, Erdman J, Setchell K D . Introduction to and perspectives from the Fifth International Symposium on the role of soy in preventing and treating chronic disease. The Journal of Nutrition, 2004,134(5):1205S-1206S.
doi: 10.1093/jn/134.5.1205S
[5] Tsangalis D, Ashton J, McGill A , et al.Biotransformation of isoflavones by bifidobacteria in fermented soymilk supplemented with D-glucose and L-Cysteine. Journal of Food Science, 2003,68(2):623-631.
doi: 10.1111/jfds.2003.68.issue-2
[6] Messina M . Soy foods, isoflavones, and the health of postmenopausal women. The American Journal of Clinical Nutrition, 2014,100(suppl):423S-430S.
doi: 10.3945/ajcn.113.071464
[7] Chun J, Kim G M, Lee K W , et al. Conversion of isoflavone glucosides to aglycones in soymilk by fermentation with lactic acid bacteria. Journal of Food Science, 2007,72(2):M39-M44.
doi: 10.1111/jfds.2007.72.issue-2
[8] Hati S, Vij S, Singh B P , et al. β-Glucosidase activity and bioconversion of isoflavones during fermentation of soymilk. Food Research International, 2015,95(1):216-220.
[9] 孙国祥, 吴美仙 . β-葡萄糖苷酶水解结合型大豆异黄酮参数相关性研究. 浙江海洋学院学报(自然科学版), 2014,33(3):284-289.
Sun G X, Wu M X . Correlation study on parameters of hydrolysis soy isoflavones and β-glucosidases. Journal of Zhejiang Ocean University (Natural Science), 2014,33(3):284-289.
[10] Mergulhaoa F J, Summersb D K, Monteiro G A . Recombinant protein secretion in Escherichia coli. Biotechnology Advances, 2005,23(3):177-202.
doi: 10.1016/j.biotechadv.2004.11.003
[11] Sorensen H P, Mortensen K K . Advanced genetic strategies for recombinant protein expression in Escherichia coli. Journal of Biotechnology, 2005,115(2):113-128.
doi: 10.1016/j.jbiotec.2004.08.004
[12] 商永梅, 包永红 . 类芽孢杆菌属β-葡萄糖苷酶在大肠杆菌中可溶性重组表达的优化. 食品工业科技, 2014,35(23):186-190.
Shang Y M, Bao Y H . Optimization of soluble expression of recombinant Paenibacillus sp. β-glucosidase in Escherichia coli. Science and Technology of Food Industy, 2014,35(23):186-190.
[13] 江民华, 林厚民, 尹金阳 , 等. 差异柠檬酸杆菌GXW-1β-葡萄糖苷酶的酶学性质及分子改造. 微生物学报, 2017,57(3):363-374.
Jiang M H, Lin H M, Yin J Y , et al. Characterization and molecular modification of β-glucosidase from Citrobacter koser GXW-1. Acta Microbiologica Sinica, 2017,57(3):363-374.
[14] 李娟, 汤斌, 李松 , 等. 匍枝根霉β-葡萄糖苷酶 BGLIII 关键位点的结构功能. 食品与发酵工业, 2015,41(2):1-6.
Li J, Tang B, Li S , et al. Structure and function of the key site of β-glucosidase BGLIII from Rhizopus stolonifer. Food and Fermentation Industries, 2015,41(2):1-6.
[15] 闫青 . 黑曲霉耐热β-葡萄糖苷酶的分离纯化及结构分析. 秦皇岛:河北科技师范学院, 2016.
Yan Q . Isolation,Purification and structure characterization of thermal resistant β-glucosidase of Aspergillus niger. Qinghuangdao:Hebei Normal University of Science and Technology, 2016.
[16] 钱利纯 . 高效水解大豆异黄酮β-葡萄糖苷酶及其对肉公鸡生产性能的影响研究. 杭州:浙江大学, 2008.
Qian L C . The hydrolyzing efficiency of isoflavone by β-glucosidase and effect of the enzyme on the growth performance of male broiler. Hangzhou:Zhejiang University, 2008.
[17] 赵云, 刘伟丰, 毛爱军 , 等. 多粘芽孢杆菌(Bacillus polymyxa)-葡萄糖苷酶基因在大肠杆菌中的表达,纯化及酶学性质分析. 生物工程学报, 2004,20(5):741-744.
Zhao Y, Liu W F, Mao A J , et al. Expression,purification and enzymatic characterization of Bacillus polymyxa β-glucosidase gene(bglA)in Escherichia coli. Chinese Journal of Biotechnology, 2004,20(5):741-744.
[18] Maekawa A, Hayase M, Yubisui T , et al. A cDNA cloned from Physarum polycephalum,encodes new type of family 3 β-glucosidase that is a fusion protein containing a calx-β motif. The International Journal of Biochemistry and Cell Biology, 2006,38(12):2164-2172.
doi: 10.1016/j.biocel.2006.06.010
[1] 张玲,曹小丹,杨海旭,李文蕾. 连续流层析技术在亲和层析中的应用及生产放大评估[J]. 中国生物工程杂志, 2021, 41(6): 38-44.
[2] 梁爱玲,刘文婷,武攀,李倩,高健,张洁,刘卫东,贾士儒,郑迎迎. 来源于Exophiala aquamarina的新型玉米赤霉烯酮水解酶的性质及底物结合中心关键氨基酸的功能研究*[J]. 中国生物工程杂志, 2021, 41(10): 19-27.
[3] 吕一凡,李更东,薛楠,吕国梁,时邵辉,王春生. LbCpf1基因的原核表达、纯化与体外切割检测 *[J]. 中国生物工程杂志, 2020, 40(8): 41-48.
[4] 蒋丹丹,王云龙,李玉林,张怡青. 含RGD修饰的病毒样颗粒递送ICG靶向肿瘤的研究 *[J]. 中国生物工程杂志, 2020, 40(7): 22-29.
[5] 谢航航,白红妹,叶超,陈永俊,袁明翠,马雁冰. 易发生聚集的重组HBcAg病毒样颗粒的纯化*[J]. 中国生物工程杂志, 2020, 40(5): 40-47.
[6] 位薇,常保根,王英,路福平,刘夫锋. Tau蛋白核心片段306~378的异源表达、纯化及聚集特性验证*[J]. 中国生物工程杂志, 2020, 40(5): 22-29.
[7] 朱衡,张继福,张云,胡云峰. 环氧交联剂和氨基载体固定化海洋假丝酵母脂肪酶*[J]. 中国生物工程杂志, 2020, 40(5): 57-68.
[8] 刘珍珍,田大勇. 狂犬病疫苗蔗糖密度梯度离心纯化工艺开发 *[J]. 中国生物工程杂志, 2020, 40(4): 25-33.
[9] 马翠萍,刘朵朵,潘炳菊,申会涛,宋亚囝. 来源于嗜碱芽孢杆菌N16-5甘露聚糖利用基因簇的乙酰酯酶AesA的克隆及性质分析*[J]. 中国生物工程杂志, 2020, 40(3): 65-71.
[10] 朱彤彤,杨磊,刘应保,孙文秀,张修国. 辣椒疫霉PcCRN20-C蛋白的表达纯化及结晶 *[J]. 中国生物工程杂志, 2020, 40(1-2): 116-123.
[11] 朱衡,张继福,张云,孙爱君,胡云峰. 聚乙二醇二缩水甘油醚交联氨基载体LX-1000EA固定化脂肪酶 *[J]. 中国生物工程杂志, 2020, 40(1-2): 124-132.
[12] 潘炳菊,张宛怡,申会涛,刘婷婷,李中媛,罗学刚,宋亚囝. 甘露寡糖分离纯化研究进展*[J]. 中国生物工程杂志, 2020, 40(11): 90-95.
[13] 王菲,胡春辉,于浩. 6-羟基烟酸3-单加氧酶(NicC)催化反应机理研究 *[J]. 中国生物工程杂志, 2019, 39(7): 15-23.
[14] 王鑫淼,张康,陈晟,吴敬. 嗜热网球菌纤维二糖差向异构酶在枯草芽孢杆菌中的表达及发酵优化 *[J]. 中国生物工程杂志, 2019, 39(7): 24-31.
[15] 付大伟,孙莹莹,徐伟. 融合蛋白NusA-hRI的高效异源表达、纯化及活性分析[J]. 中国生物工程杂志, 2019, 39(3): 21-28.