Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2017, Vol. 37 Issue (10): 42-52    DOI: 10.13523/j.cb.20171006
研究报告     
Rhodococcus ruber CGMCC3090腈水合酶纯化、酶学性质及结晶研究
王世伟1, 王敏2, 王卿惠1
1. 齐齐哈尔大学 生命科学与农林学院 齐齐哈尔 161000;
2. 工业微生物教育部重点实验室 天津科技大学生物工程学院 天津 300457
Purification,Crystallization and Characterization of a Nitrile Hydratase from Rhodococcus ruber CGMCC3090 Strain
WANG Shi-wei1, WANG Min2, WANG Qing-hui1
1. College of Life Science of Qiqihar University, Qiqihar 161006, China;
2. Key Laboratory of Fermentation Microbiology, Tianjin University of Science and Technology, Ministry of Education, Tianjin 300457, China
 全文: PDF(1707 KB)   HTML
摘要: Rhodococcus ruber CGMCC309菌株为酰胺酶及腈水解酶双重缺陷菌株,研究表明该菌能产宽泛底物特异性的腈水合酶。对该菌株产生的新型腈水合酶(NHase-3090)进行纯化和结晶,并研究了其酶学性质。采用疏水、离子交换及凝胶过滤3种层析方法,使该酶纯化倍数达到17.14,得率高达26.2%。电泳分析表明,全酶分子量为105 kDa,由α(24.3 kDa)和β(28.0kDa)2个亚基组成,并构成α2β2四聚体。酶的最适pH和温度分别为7.5和30℃。该酶明显受不同金属离子影响。动力学研究表明,Km为178.8 mM;Vmax为209.1 μmol/L·min·mg。研究发现3种金属离子Zn2+,CO2+和Cd2+有利于酶蛋白结晶。结晶最佳条件是:采用112-34#试剂(0.05mol/L水合硫酸镉、0.1mol/L HEPS和1.0mol/L三水醋酸钠),蛋白质浓度为15 mg/ml,结晶温度为16℃,pH为7.5,结晶时间为30 d。腈水合酶蛋白单晶经X射线衍射,分辨率达到了3.7Å。该腈水合酶的纯化和结晶为进一步深入研究其结构和功能奠定了基础。
关键词: 赤红球菌CGMCC3090纯化结晶酶学性质腈水合酶    
Abstract: Rhodococcus ruber CGMCC3090 was separated from soil polluted by nitriles at Tianjin suburb.The strain can transform nitriles into correspondent amides with broad substrate spectra and higher catalytic activity, stronger substrate tolerance, good regioselectivity especially to dinitrile substrates (e.g. adiponitrile).The new type of NHase was purified to homogenety after sonication, ammonium sulfate fractionation, hydrophobic, ion exchange and gel-filtration column chromatography. About 17.14-fold purification was achieved with 26.2% yield. The holoenzyme purified (Mr 105kDa;α2β2) consists of α subunit (Mr 24.3 kDa) and β subunit (Mr 28 kDa) respectively. The optimal temperature and pH was 30℃ and pH 7.5 respectively.The enzyme purified was inhibited or promoted by different metals in various degrees. The Km and Vmax values of purified NHase respectively were 178.8 mM and 209.1 μmole/min/mg protein using 3-cyanopyridine as substrate.The nitrile hydratase crystallization conditions were screened and optimized by using 6 crystallization reagents screened from 194 reagents from 4 set Kit(Hampton Research).A single crystal from the NHase was obtained at the optimum conditions(15 mg protein/ml,16℃,pH 7.5,30 d)by using 112-34# reagent (0.05mol/L cadmium sulfate hydrate,0.1mol/L HEPS and 1.0mol/L sodium acetate trihydrate). the Nitrile hydratase single crystal had a 3.7Å resolution by X ray diffraction analysis.It paved the way for in-depth study of the structure and function of the nitrile hydratase from Rhodococcus ruber CGMCC3090 strain.
Key words: Rhodococcus ruber    Nitrile hydratase    Purification    Characterization    Crystallization
收稿日期: 2017-06-27 出版日期: 2017-10-25
ZTFLH:  Q813.11  
基金资助: 2016年黑龙江省大学生创新创业训练计划(201610221026)、黑龙江省教育厅科学技术研究项目(12541855)资助项目
通讯作者: 王世伟,wsw888535@sohu.com     E-mail: wsw888535@sohu.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王敏
王卿惠
王世伟

引用本文:

王世伟, 王敏, 王卿惠. Rhodococcus ruber CGMCC3090腈水合酶纯化、酶学性质及结晶研究[J]. 中国生物工程杂志, 2017, 37(10): 42-52.

WANG Shi-wei, WANG Min, WANG Qing-hui. Purification,Crystallization and Characterization of a Nitrile Hydratase from Rhodococcus ruber CGMCC3090 Strain. China Biotechnology, 2017, 37(10): 42-52.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20171006        https://manu60.magtech.com.cn/biotech/CN/Y2017/V37/I10/42

[1] Prasad S, Misra A, Jangir V P, et al. A propionitrile-induced nitrilase of Rhodococcus sp. NDB 1165 and its application in nicotinic acid synthesis. World Journal of Microbiology and Biotechnology,2007, 23(3):345-353.
[2] Cantarella L, Gallifuoco A, Malandra A, et al. High-yield continuous production of nicotinic acid via nitrile hydratase-amidase cascade reactions using cascade CSMRs. Enzyme and Microbial Technology, 2011,48(4-5):345-350.
[3] Pratush A, Seth A, Bhalla T C.Cloning, sequencing, and expression of nitrile hydratase gene of mutant 4D strain of Rhodococcus rhodochrous PA 34 in E. coli. Applied Biochemstry Biotechnology, 2012,168(3):465-486.
[4] Prasad S, Bhalla T. Nitrile hydratases (NHases):At the interface of academia and industry. Biotechnology Advances, 2010, 28(6):725-741.
[5] Sharma M, Sharma N N, Bhalla TC. Amidases:versatile enzymes in nature. Rev Environ Sci Biotechnol, 2009, 8(4):343-366.
[6] Ma Y, Yu H, Pan W, et al. Identification of nitrile hydratase-producing Rhodococcus ruber TH and characterization of an amiE-negative mutant. Bioresource Technology,2010,101(1):285-291.
[7] Jun Y, Wang Z Q, Liu R C, et al. Screening, cultivation, and biocatalytic performance of Rhodococcus boritolerans FW815 with strong 2,2-dimethylcyclopropanecarbonitrile hydratase activity.Journal of Industrial Microbiology & Biotechnology,2012, 39(3):409-417.
[8] Zhang J L, Wang M, Sun H, et al. Isolation and characterization of Rhodococcus ruber CGMCC3090 that hydrolyzes aliphatic, aromatic and heterocyclic nitriles. African Journal of Biotechnology, 2009, 8(20):5467-5486.
[9] Zhong L P, Zhang J L, Song Y, et al. Study on screening, identification and culture conditions of a strain with nitrile hydratase. Journal of Tianjin University of Science and Technology, 2008, 23(4):35-39.
[10] Zhang J L, Wang M, Zhong L P, et al.Identification and study on enzymic activity of Rhodococcus sp.TCCC 28001 with nitrile hydratase activity. Journal of Shandong Agricultural University (Natural Science), 2010, 41(1):11-16.
[11] Song Y, Zhong L P, Zhang J L, et al. Effect of metal ions on Rhrodococcus sp. nitrile hydratase activity. Journal of Tianjin University of Science and Technology, 2009, 24(1):11-14,19.
[12] Wang S W, Wang M, Wang Q H. Breeding of NHase hyper-producing Rhodococcus ruber strain LUV30-06 and verification of mutants by RAPD. American Journal of Molecular Biology, 2013, 3(2):108-114.
[13] Wang S W, Wang Q H, Zhai Y, et al. Screening of NHase high-producing Rhodococcus ruber strain TQD-58 by both parents inactivated protoplast fusion. 2012 International Symposium on Information Technology in 279 Medicine and Education (ITME2012), Hokkaido, Japan.2012, 737-740.
[14] Zhang J L, Wang M, Zhong L P, et al. Identification and study on enzymic activity of Rhodcoccus sp.TCCC28001 with nitrile hydratase activity. Journal of Shangdong Agricultural University (Natural science), 2010,41(1):11-16.
[15] Shen Y B, Wang M, Li X D, et al.Highly efficient synthesis of 5-cyanovaleramide by Rhodococcus ruber CGMCC3090 resting cells.Journal of Chemical Technology and Biotechnology, 2012, 87(10):1396-1400.
[16] Zhai Y, Shen Y B, Tang R, et al.Biotransformation of cinnamonitrile into cinnamamide with Rhodococcus ruber CGMCC3090.Journal of Tianjin University of Science and Technology, 2014, 29(4):11-15.
[17] Wang S W, Dai Y J, Wang J X, et al.Molecular insights into substrate specificity of Rhodococcus ruber CGMCC3090 by gene cloning and homology modeling.Enzyme and Microbial Technology, 2013, 52(2):111-117.
[18] Wang S W, Wang M. Research process on microbial diversity of producing-nitrile hydratase and study on nitrile hydratase. China Biotechnology, 2011, 31(9);117-123.
[19] Davis B, DISC J.Electrophoresis-Ⅱ. method and application to human serum proteins.Annals of the New York Academy of Sciences, 1964, 121(2):404-427.
[20] Laemmli U K.Cleavage of structural protein during the assembly of the head of bacteriophage T4.Nature, 1970, 227:680-685.
[21] Okamoto S, Eltis L D.Purification and characterization of a novel nitrile hydratase from Rhodococcus sp. RHA1.Molecular Microbiology, 2007, 65(3):828-838.
[22] Prasad S, Raj J, Bhalla T C.Purification of a hyperactive nitrile hydratase from resting cells of Rhodococcus rhodochrous PA-34.Indian J Microbiol, 2009, 49(3):237-242.
[23] Wang S W, Wang Q H, Wang W Y, et al. Research process on protein purification of nitrile hydratase. Journal of Science of Teachers College and University, 2013, 33(1):50-53.
[24] Kamila Rzeznicka, Sebastian Schätzle, Dominique Böttcher, et al.Cloning and functional expression of a nitrile hydratase(NHase)from Rhodococcus equi TG328-2 in Escherichia coli, its purification and biochemical characterization.Appl Microbiol Biotechno, 2010, 85(5):1417-1425.
[25] Cramp R A, Cowan D A. Molecular characterization of a novel thermophilic nitrile hydratase.Biochem Biophys Acta,1999, 1431(1):249-260.
[26] Li Q J,Liu Z Q,Zhang Y G,et al.Identification and characterization of Serratia marcescens ZJB-09104, a nitrile-converting bacterium.World Journal of Microbiology and Biotechnology,2010, 26, (5):817-823.
[27] Okamoto S, Eltis L D. Purification and characterization of a novel nitrile hydratase from Rhodococcus sp. RHA 1. Mol Microbiol, 2007, 65(3):828-838.
[28] Wieser M, Takeuchi K, Wada Y, et al.Low-molecular-mass nitrile hydratase from Rhodococcus rhodochrous J1:purification, substrate specificity and comparison with the analogous high-molecular-mass enzyme.FEMS Microbiology Letters, 1998, 169(1):17-22.
[29] Mauger J, Nagasawa T, Yamada H. Synthesis of various aromatic amide derivatives using nitrile hydratase of Rhodococcus rhodochrous J1.Tetrahedron, 1989, 45(5):1347-1354.
[30] Mauger J, Nagasawa T, Yamada H. Nitrile hydratase-catalyzed production of isonicotinamide, picolinamide and pyrazineamide from 4-cyanopyridine, 2-cyanopyridine and cyanopyrazine in Rhodococcus rhodochrous J1.Journal of Biotechnology,1988, 8(1):87-95.
[1] 张玲,曹小丹,杨海旭,李文蕾. 连续流层析技术在亲和层析中的应用及生产放大评估[J]. 中国生物工程杂志, 2021, 41(6): 38-44.
[2] 梁爱玲,刘文婷,武攀,李倩,高健,张洁,刘卫东,贾士儒,郑迎迎. 来源于Exophiala aquamarina的新型玉米赤霉烯酮水解酶的性质及底物结合中心关键氨基酸的功能研究*[J]. 中国生物工程杂志, 2021, 41(10): 19-27.
[3] 吕一凡,李更东,薛楠,吕国梁,时邵辉,王春生. LbCpf1基因的原核表达、纯化与体外切割检测 *[J]. 中国生物工程杂志, 2020, 40(8): 41-48.
[4] 蒋丹丹,王云龙,李玉林,张怡青. 含RGD修饰的病毒样颗粒递送ICG靶向肿瘤的研究 *[J]. 中国生物工程杂志, 2020, 40(7): 22-29.
[5] 谢航航,白红妹,叶超,陈永俊,袁明翠,马雁冰. 易发生聚集的重组HBcAg病毒样颗粒的纯化*[J]. 中国生物工程杂志, 2020, 40(5): 40-47.
[6] 位薇,常保根,王英,路福平,刘夫锋. Tau蛋白核心片段306~378的异源表达、纯化及聚集特性验证*[J]. 中国生物工程杂志, 2020, 40(5): 22-29.
[7] 朱衡,张继福,张云,胡云峰. 环氧交联剂和氨基载体固定化海洋假丝酵母脂肪酶*[J]. 中国生物工程杂志, 2020, 40(5): 57-68.
[8] 刘珍珍,田大勇. 狂犬病疫苗蔗糖密度梯度离心纯化工艺开发 *[J]. 中国生物工程杂志, 2020, 40(4): 25-33.
[9] 马翠萍,刘朵朵,潘炳菊,申会涛,宋亚囝. 来源于嗜碱芽孢杆菌N16-5甘露聚糖利用基因簇的乙酰酯酶AesA的克隆及性质分析*[J]. 中国生物工程杂志, 2020, 40(3): 65-71.
[10] 陈心怡,刘护,戴大章,李春. 提高糖基化的酶蛋白可结晶性研究 *[J]. 中国生物工程杂志, 2020, 40(3): 154-162.
[11] 朱彤彤,杨磊,刘应保,孙文秀,张修国. 辣椒疫霉PcCRN20-C蛋白的表达纯化及结晶 *[J]. 中国生物工程杂志, 2020, 40(1-2): 116-123.
[12] 朱衡,张继福,张云,孙爱君,胡云峰. 聚乙二醇二缩水甘油醚交联氨基载体LX-1000EA固定化脂肪酶 *[J]. 中国生物工程杂志, 2020, 40(1-2): 124-132.
[13] 潘炳菊,张宛怡,申会涛,刘婷婷,李中媛,罗学刚,宋亚囝. 甘露寡糖分离纯化研究进展*[J]. 中国生物工程杂志, 2020, 40(11): 90-95.
[14] 王菲,胡春辉,于浩. 6-羟基烟酸3-单加氧酶(NicC)催化反应机理研究 *[J]. 中国生物工程杂志, 2019, 39(7): 15-23.
[15] 王鑫淼,张康,陈晟,吴敬. 嗜热网球菌纤维二糖差向异构酶在枯草芽孢杆菌中的表达及发酵优化 *[J]. 中国生物工程杂志, 2019, 39(7): 24-31.