Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2020, Vol. 40 Issue (5): 57-68    DOI: 10.13523/j.cb.1912027
技术与方法     
环氧交联剂和氨基载体固定化海洋假丝酵母脂肪酶*
朱衡1,2,3,张继福4,张云1,胡云峰1,3,**()
1 中国科学院南海海洋研究所 中国科学院热带海洋生物资源与生态重点实验室 广州 510301
2 中国科学院大学 北京 100049
3 南方海洋科学与工程广东省实验室(广州) 广州 511458
4 广东省中医院 广州 510120
Immobilization of Marine Candida Lipase Using Novel Epoxy Cross-linker and Amino Carrier
ZHU Heng1,2,3,ZHANG Ji-fu4,ZHANG Yun1,HU Yun-feng1,3,**()
1 CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences,Guangzhou 510301,China
2 University of Chinese Academy of Sciences, Beijing 100049, China
3 Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou),Guangzhou 511458,China
4 Guangdong Provincial Hospital of Chinese Medicine,Guangzhou 510120,China
 全文: PDF(1854 KB)   HTML
摘要:

游离酶经过固定化后,稳定性和环境耐受性得到提高,在食品、医药、化工、环境和皮革等领域可以很好的提高酶的利用率并降低生产成本,具有极大的应用潜力。新型交联剂在固定化酶工艺的应用极大推进了固定化酶研究的深入。借助新型交联剂聚乙二醇二缩水甘油醚(PEGDGE),利用氨基载体LX-1000HA固定化海洋假丝酵母脂肪酶,结合单因素和正交试验优化得到交联及固定化条件为:交联温度30℃,交联2h,交联剂浓度0.75%,pH7.0,加酶量800U,载体量0.5g,固定化2h,固定化温度45℃。根据上述最佳固定化工艺,制备得到固定化酶LX-1000HA-PEGDGE-CRL在最适条件下测得酶活达到160.81U/g,约为此前制备的固定化酶LX-1000HA-GA-CRL(由LX-1000HA和戊二醛交联脂肪酶得到)和LX-1000EA-PEGDGE-CRL(由短链氨基载体LX-1000EA和PEGDGE交联脂肪酶得到)酶活的2倍,发现固定化酶LX-1000HA-PEGDGE-CRL的最适反应温度相比于游离酶提高15℃;在70℃的环境中3h后酶活仍存留70%;循环使用6次后残留65%左右的酶活;酸碱耐受性和储存稳定性也表现良好,4℃保存30天后剩余约70%的初始酶活。同时,将制备的固定化酶LX-1000HA-PEGDGE-CRL与游离酶、固定化酶LX-1000HA-GA-CRL、固定化酶LX-1000EA-PEGDGE-CRL进行了比较,发现固定化酶LX-1000HA-PEGDGE-CRL在温度耐受性和重复使用性等方面具有更好的使用效果。

关键词: 聚乙二醇缩水甘油醚氨基载体脂肪酶固定化酶学性质    
Abstract:

After immobilization, the stability and environmental tolerance of the free enzyme were optimized, which can improve the utilization rate of enzymes and reduce the production costs in diverse fields such as food, medicine, chemical industry, environment and leather, and thus possesses great application potentials. The utilization of novel crosslinking agents in immobilized enzyme process has greatly advanced the study of immobilized enzymes.The optimized crosslinking and immobilization conditions were obtained by using the new crosslinking agent polyethylene glycol diglycidyl ether (PEGDGE), which was immobilized with the amino carrier LX-1000HA, and by using single factor and orthogonal experiment optimization: crosslinking temperature 30℃, crosslinking time 2h, crosslinking agent concentration 0.75%, pH 7.0, enzyme amount 800U, carrier volume 0.5g, immobilized time 2h, immobilized temperature 45℃. Using the optimized immobilization process, the immobilized enzyme LX-1000HA-PEGDGE-CRL was prepared to achieve 160.81U/g which was about twice of the activities of immobilized enzyme LX-1000HA-GA-CRL(obtained by LX-1000HA and glutaraldehyde crosslinked lipase) and LX-1000EA-PEGDGE-CRL(obtained by short-chain amino carrier LX-1000EA and PEGDGE crosslinked lipase). The optimal reaction temperature of immobilized enzyme LX-1000HA-PEGDGE-CRL was found to be 15℃ higher than that of free enzyme; the immobilized enzyme could still remain 70% of its original activity after incubation at 70℃ for 3h; the immobilized enzyme could remain about 65% of its original activity after recycling for 6 times; the immobilized enzyme also behaved good tolerance to acid and alkali condition and good storage stability, the immobilized enzyme could remain about 70% of the initial enzyme activity after storage at 4℃ for 30 days. After the comparation of immobilized enzyme LX-1000HA-PEGDGE-CRL with free enzyme, immobilized enzyme LX-1000HA-GA-CRL and immobilized enzyme LX-1000EA-PEGDGE-CRL, the immobilized enzyme LX-1000HA-PEGDGE-CRL behaved better application effect in thermo-tolerance and reusability.

Key words: Polyethylene glycol diglycidyl ether    Amino-carrier    Lipase    Immobilization    Enzymatic property
收稿日期: 2019-12-18 出版日期: 2020-06-02
ZTFLH:  Q814.2  
基金资助: * 广东省自然科学基金(2018A030313151);广东省海洋渔业科技攻关与研发方向项目(A201701C12);中国科学院“科学”号高端用户项目(KEXUE2018G05);中国科学院战略性先导科技专项(XDA11030404);南方海洋科学与工程广东省实验室(广州)人才团队引进重大专项(GML2019ZD0406)
通讯作者: 胡云峰     E-mail: yunfeng.hu@scsio.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
朱衡
张继福
张云
胡云峰

引用本文:

朱衡,张继福,张云,胡云峰. 环氧交联剂和氨基载体固定化海洋假丝酵母脂肪酶*[J]. 中国生物工程杂志, 2020, 40(5): 57-68.

ZHU Heng,ZHANG Ji-fu,ZHANG Yun,HU Yun-feng. Immobilization of Marine Candida Lipase Using Novel Epoxy Cross-linker and Amino Carrier. China Biotechnology, 2020, 40(5): 57-68.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.1912027        https://manu60.magtech.com.cn/biotech/CN/Y2020/V40/I5/57

图1  LX-1000HA固定化LIPASE过程示意图
水平 因素
A(载体量)(g) B(pH) C(温度)(℃) D(时间)(h)
1 1.00 7 50 1
2 1.25 8 55 2
3 1.50 9 60 3
表1  正交试验因素水平表
图2  单因素试验确定交联及固定化条件
序号 载体量(g) pH 温度(℃) 时间(h) 绝对酶活(U/g) 相对酶活(%) 酶活回收率(%)
1 0.50 6 40 1 52.80 50.12 5.40
2 0.50 7 45 2 105.38 100.00 11.83
3 0.50 8 50 3 74.27 70.51 4.87
4 0.75 6 45 3 43.68 41.47 4.66
5 0.75 7 50 1 60.24 57.19 8.83
6 0.75 8 40 2 40.30 38.25 4.45
7 1.00 6 50 2 47.63 45.22 6.60
8 1.00 7 40 3 46.26 43.93 8.33
9 1.00 8 45 1 37.34 35.41 5.00
K1 232.45 144.11 139.35 150.38
K2 144.22 211.88 186.40 193.31
K3 131.24 151.91 182.15 164.22
R 101.21 67.77 47.04 42.93
表2  脂肪酶固定化条件优化正交试验结果与分析
影响因素 A(载体量) B(pH) C(温度) D(时间)
K1 U(1+2+3) U(1+4+7) U(1+6+8) U(1+5+9)
K2 U(4+5+6) U(2+5+8) U(2+4+9) U(2+6+7)
K3 U(7+8+9) U(3+6+9) U(3+5+7) U(3+4+8)
R A因素下Umax-Umin B因素下Umax-Umin C因素下Umax-Umin D因素下Umax-Umin
表3  计算过程
图3  固定化酶和游离酶的酶学性质比较
[1] 陈秀琳 . 脂肪酶固定化的研究概况. 海峡药学, 2007,19(12):114-116.
Chen X L . Overview of lipase immobilization. Strait Pharmaceutical Journal, 2007,19(12):114-116.
[2] Patrick A . Immobilisation and application of lipases in organic media. Chem Soc Rev, 2013,42(15):6406-6436.
[3] Cygler M, Schrag J D . Structure and conformational flexibility of Candida rugosa lipase. Elsevier, 1999,1441(2-3):205-214.
[4] Jaeger K E, Eggert T . Lipases for biotechnology. Elsevier Ltd, 2002,13(4):390-397.
[5] 魏雪, 孙丽超, 李淑英 , 等. 脂肪酶的固定化及其在食品领域的应用. 生物技术通报, 2016,32(11):59-64.
Wei X, Sun L C, Li S Y , et al. Immobilization of lipase and its application in food industry. Biotechnology Bulletin, 2016,32(11):59-64.
[6] Guldhe A, Singh B, Mutanda T , et al. Advances in synthesis of biodiesel via enzyme catalysis: Novel and sustainable approaches. Elsevier Ltd, 2015,41(jan.):1447-1464.
[7] Gandhi N N . Applications of lipase. Springer-Verlag, 1997,74(6):621-634.
[8] Lima A C P. Cammarota M C. Gutarra M L E . Obtaining filamentous fungi and lipases from sewage treatment plant residue for fat degradation in anaerobic reactors. PEERJ , 2018,6(e5368):1-18.
[9] 陈枫, 韦仕航 . 微生物脂肪酶在动物饲料中的应用研究. 当代畜牧, 2014,17:84-85.
Chen F, Wei S H . Application of microbial lipase in animal feed. Contemporary Animal Husbandry, 2014,17:84-85.
[10] 黄霜霜 . 脂肪酶拆分手性药物布洛芬的工艺研究. 武汉:华中科技大学, 2015.
Huang S S . Study on lipase-catalyzed resolution of chiral drug ibuprofen. Wuhan: Huazhong University of Science and Technology, 2015.
[11] Carlsson N, Gustafsson H, Tho?rn C , et al. Enzymes immobilized in mesoporous silica: A physical-chemical perspective. Advances in Colloid and Interface Science, 2014,205(2014):339-360.
[12] Nadar S S, Rathod V K . Encapsulation of lipase within metal-organic framework (MOF) with enhanced activity intensified under ultrasound. Enzyme and Microbial Technology, 2018,108:11-20.
[13] Hilal N, Nigmatullin R, Alpatova A . Immobilization of cross-linked lipase aggregates within microporous polymeric membranes. Journal of Membrane Science, 2004,238(1):131-141.
[14] Zhang S, Shang W T, Yang X X , et al. Immobilization of lipase using alginate hydrogel beads and enzymatic evaluation in hydrolysis of p-nitrophenol butyrate. Bulletin of the Korean Chemical Society, 2013,34(9):2741-2746.
doi: 10.5012/bkcs.2013.34.9.2741
[15] Feng W, Ji P J . Enzymes immobilized on carbon nanotubes. Biotechnology Advances, 2011,29(6):889-895.
doi: 10.1016/j.biotechadv.2011.07.007
[16] Xia J J, Zou B, Zhu G B , et al. Quick separation and enzymatic performance improvement of lipase by ionic liquid-modified Fe3O4 carrier immobilization. Bioprocess and Biosystems Engineering, 2018, 2018,41(5):739-748.
[17] Zou B, Chu Y H, Xia J J , et al. Immobilization of lipase by ionic liquid-modified mesoporous SiO2 adsorption and calcium alginate-embedding method. Appl Biochem Biotechnol , 2018,185(3):606-618.
[18] Dicosimo R, Mcauliffe J, Poulose A J , et al. Industrial use of immobilized enzymes. Chem Soc Rev, 2013,42(15):6437-6474.
[19] Tran D N, Balkus K J . Perspective of recent progress in immobilization of enzymes. ACS Catalysis, 2011,1(8):956-968.
[20] Pulat M, Akalin G O . Preparation and characterization of gelatin hydrogel support for immobilization of Candida rugosa lipase. Artificial Cells, Nanomedicine, and Biotechnology, 2013,41(3):145-151.
[21] Aissaoui N, Landoulsi J, Bergaoui L , et al. Catalytic activity and thermostability of enzymes immobilized on silanized surface: Influence of the crosslinking agent. Enzyme and Microbial Technology, 2013,52(6):336-343.
[22] 周清华 . 组合固定化法增强交联脂肪酶聚集体稳定性的研究. 芜湖:安徽工程大学, 2018.
Zhou Q H . Enhanced the stability of cross-linked lipase aggregates by combined immobilization. Wuhu: Anhui Polytechnic University, 2018.
[23] 卢大胜, 雍克岚, 陈旭 , 等. 新型交联试剂三羟甲基磷固定α-葡萄糖苷酶. 食品科学, 2005,26(6):61-64.
Lu D S, Yong K L, Chen X , et al. Immobilization of α-glucosidase with a novel coupling reagent-tris(hydroxymethyl)phosphine. Food Science, 2005,26(6):61-64.
[24] Csiffáry G, Füt? P, Adányi N , et al. Ascorbate oxidase-based amperometric biosensor for L-ascorbic acid determination in beverages. Food Technology and Biotechnology, 2016,54(1):31-35.
[25] Boka B, Adanyi N, Szamos J . Putrescine biosensor based on putrescine oxidase from Kocuria rosea. Enzyme and Microbial Technology, 2012,51(5):258-262.
[26] 杨建军, 马晓迅, 王贵军 . 大孔树脂吸附固定化脂肪酶机理研究. 西北大学学报(自然科学版), 2009,39(2):241-245.
Yang J J, Ma X X, Wang G J . A study on mechanism of lipase immobilized with macroporous resins. Journal of Northwestern University (Natural Science Edition), 2009,39(2):241-245.
[27] Cirillo G, Nicoletta F P, Curcio M , et al. Enzyme immobilization on smart polymers: Catalysis on demand. Elsevier B V, 2014,83:62-69.
[28] 冯超, 蒋丽娟, 黎继烈 , 等. 固定化脂肪酶研究进展. 食品工业科技, 2011,32(2):373-375,378.
Feng C, Jiang L J, Li J L , et al. Research progress of immobilized lipase. Food Industry Technology, 2011,32(2):373-375,378.
[29] 孟策, 戴小敏, 刘袖洞 . 固定化脂肪酶的载体材料. 辽宁化工, 2018,47(12):1244-1249.
Meng C, Dai X M, Liu X D . Carrier materials for lipase immobilization. Liaoning Chemical Industry, 2018,47(12):1244-1249.
[30] 李阳, 韦伟, 曹茜 , 等. 脂肪酶固定化新材料. 中国粮油学报, 2014,29(7):122-128.
Li Y, Wei W, Cao Q , et al. New materials for immobilized lipase. Journal of the Chinese Cereals and Oils Association, 2014,29(7):122-128.
[31] 侯爱军, 徐冰斌, 梁亮 , 等. 改进铜皂-分光光度法测定脂肪酶活力. 皮革科学与工程, 2011,21(1):22-27.
Hou A J, Xu B B, Liang L , et al. A modified colorimetric assay of lipase activity using emulsified oliveoil as the substrate. Leather Science and Engineering, 2011,21(1):22-27.
[32] Wang S G, Zhang W D, Li Z , et al. Lipase immobilized on the hydrophobic polytetrafluoroethene membrane with nonwoven fabric and its application in intensifying synthesis of butyl oleate. Applied Biochemistry and Biotechnology, 2010,162(7):2015-2026.
doi: 10.1007/s12010-010-8977-1
[33] Saisuburamaniyan N, Krithika L, Dileena K P , et al. Lipase assay in soils by copper soap colorimetry. Analytical Biochemistry, 2004,330(1):3-70.
[34] Wang S G, Zheng D B, Yin L Y , et al. Preparation, activity and structure of cross-linked enzyme aggregates (CLEAs) with nanoparticle. Enzyme and Microbial Technology, 2017,107:22-31.
[35] Talukder M M R., Zaman M M, Hayashi Y , et al. Ultrasonication enhanced hydrolytic activity of lipase in water/isooctane two-phase systems. Biocatalysis and Biotransformation, 2006,24(3):194-289.
[36] Zhang W D, Qing W H, Ren Z Q , et al. Lipase immobilized catalytically active membrane for synthesis of lauryl stearate in a pervaporation membrane reactor. Bioresource Technology, 2014,172:16-21.
doi: 10.1016/j.biortech.2014.08.019
[37] Zheng G, Shu B, Yan S . Preparation and characterization of immobilized lipase on magnetic hydrophobic microspheres. Enzyme and Microbial Technology, 2003,32(7), 776-782.
doi: 10.1016/S0141-0229(03)00051-6
[38] Liu X Q, Guan Y P, Shen R , et al. Immobilization of lipase onto micron-size magnetic beads. Chromatography B, 2005,822(1-2):91-97.
[39] 徐珊, 李任强, 张继福 , 等. 孵育对环氧树脂固定化脂肪酶的稳定性研究. 华南农业大学学报, 2019,40(3):61-66.
Xu S, Li R Q, Zhang J F , et al. Effect of incubation on the stabilization of lipase immobilized by epoxy resin. Journal of South China Agricultural University, 2019,40(3):61-66.
[40] 朱衡, 林海蛟, 张继福 , 等. 氨基载体共价结合固定化海洋假丝酵母脂肪酶. 中国生物工程杂志, 2019,39(7):71-78.
Zhu H, Lin H J, Zhang J F , et al. Covalent immobilization of marine Candida rugosa lipase using amino carrier. China Biotechnology, 2019,39(7):71-78.
[41] 朱衡, 张继福, 张云 , 等. 聚乙二醇二缩水甘油醚交联氨基载体LX-1000EA固定化脂肪酶. 中国生物工程杂志, 2020,40(Z1):124-132.
Zhu H, Zhang J F, Zhang Y , et al. Immobilization of lipase through cross-linking of polyethylene glycol diglycidyl ether with amino carrier LX-1000EA. China Biotechnology, 2020,40(Z1):124-132.
[42] Reshmi R, Sanjay G, Sugunan S . Immobilization of alpha-amylase on zirconia: A heterogeneous biocatalyst for starch hydrolysis. Catal Commun, 2007,8(3):393-399.
[43] 徐然, 韩生华, 王立刚 , 等. 氨基硅胶固定脂肪酶的制备及其酶学性质研究. 山西大同大学学报, 2019,35(5):1-5.
Xu R, Han S H, Wang L G , et al. Preparation and enzymatic properties of lipase immobilized on amino silica gel. Journal of Shanxi Datong University, 2019,35(5):1-5.
[44] 张权, 盛军, 刘均忠 , 等. 壳聚糖固定化海洋微生物YS2071脂肪酶及其酶学性质. 渔业科学进展, 2015,36(6):100-106.
Zhang Q, Sheng J, Liu J Z , et al. Chitosan immobilization of lipase from marine microorganism YS2071 and its enzyme characteristics. Progress in Fishery Sciences, 2015,36(6):100-106.
[45] 周蕊, 邢炎华, 王燕 . 以壳聚糖-戊二醛为载体柔性固定假丝酵母脂肪酶Candida rugosa lipase. 当代化工, 2019,48(8):1686-1689.
Zhou R, Xing Y H, Wang Y . Immobilization of Candida rugosa lipase by using chitosan-glutaraldehyde as support. Contemporary Chemical Industry, 2019,48(8):1686-1689.
[47] Kim M, Park J M, Um H J , et al. Immobilization of cross-linked lipase aggregates onto magnetic beads for enzymatic degradation of polycaprolactone. Journal of Basic Microbiology, 2010,50(3):218-226.
[48] Zou B, Hu Y, Jiang L , et al. Mesoporous material SBA-15 modified by amino acid ionic liquid to immobilize lipase via ionic bonding and cross-linking method. Ind Eng Chem Res, 2013,52(8):2844-2851.
[49] Vitola G, Büning D, Schumacher J , et al. Development of a novel immobilization method by using microgels to keep enzyme in hydrated microenvironment in porous hydrophobic membranes. Macromolecular Bioscience, 2017,17(5):1-12.
[1] 陈开通,郑文隆,杨立荣,徐刚,吴坚平. 氨基树脂固定化L-苏氨酸醛缩酶及其应用*[J]. 中国生物工程杂志, 2021, 41(9): 55-63.
[2] 周惠颖,周翠霞,张婷,王雪雨,张会图,冀颐之,路福平. 强化底物利用酶系表达,提升地衣芽孢杆菌生产碱性蛋白酶性能[J]. 中国生物工程杂志, 2021, 41(2/3): 53-62.
[3] 魏子翔,张柳群,雷磊,韩正刚,杨江科. 疏棉状嗜热丝孢菌(Thermomyces lanuginosus)脂肪酶的理性设计提高其活性和温度稳定性[J]. 中国生物工程杂志, 2021, 41(2/3): 63-69.
[4] 杨运松,梁金花,杨晓瑞,马艺鸣,金爽,孙姚瑶,朱建良. 柴油生物酶催化氧化脱硫的研究进展[J]. 中国生物工程杂志, 2021, 41(10): 109-115.
[5] 梁爱玲,刘文婷,武攀,李倩,高健,张洁,刘卫东,贾士儒,郑迎迎. 来源于Exophiala aquamarina的新型玉米赤霉烯酮水解酶的性质及底物结合中心关键氨基酸的功能研究*[J]. 中国生物工程杂志, 2021, 41(10): 19-27.
[6] 董璐,张继福,张云,胡云峰. 环氧树脂固定化的Bacillus sp. DL-2胞外蛋白酶在拆分(±)-乙酸苏合香酯中的应用 *[J]. 中国生物工程杂志, 2020, 40(4): 49-58.
[7] 马翠萍,刘朵朵,潘炳菊,申会涛,宋亚囝. 来源于嗜碱芽孢杆菌N16-5甘露聚糖利用基因簇的乙酰酯酶AesA的克隆及性质分析*[J]. 中国生物工程杂志, 2020, 40(3): 65-71.
[8] 朱衡,张继福,张云,孙爱君,胡云峰. 聚乙二醇二缩水甘油醚交联氨基载体LX-1000EA固定化脂肪酶 *[J]. 中国生物工程杂志, 2020, 40(1-2): 124-132.
[9] 朱衡,林海蛟,张继福,张云,孙爱君,胡云峰. 氨基载体共价结合固定化海洋假丝酵母脂肪酶 *[J]. 中国生物工程杂志, 2019, 39(7): 71-78.
[10] 王菲,胡春辉,于浩. 6-羟基烟酸3-单加氧酶(NicC)催化反应机理研究 *[J]. 中国生物工程杂志, 2019, 39(7): 15-23.
[11] 王鑫淼,张康,陈晟,吴敬. 嗜热网球菌纤维二糖差向异构酶在枯草芽孢杆菌中的表达及发酵优化 *[J]. 中国生物工程杂志, 2019, 39(7): 24-31.
[12] 巩凤芹,刘启顺,谭海东,金花,谭成玉,尹恒. MOFs固定5-羟甲基糠醛氧化酶及其催化活性的研究 *[J]. 中国生物工程杂志, 2019, 39(6): 41-47.
[13] 谢玉锋,韩雪梅,路福平. 副干酪乳杆菌β-葡糖苷酶的表达、纯化及酶学性质研究 *[J]. 中国生物工程杂志, 2019, 39(5): 72-79.
[14] 林海蛟,张继福,张云,孙爱君,胡云峰. 添加剂对大孔吸附树脂固定化脂肪酶的影响 *[J]. 中国生物工程杂志, 2019, 39(4): 38-51.
[15] 朱梦露,王雪雨,刘鑫,路福平,孙登岳,秦慧民. 一种新型亮氨酸5-羟化酶NmLEH的异源表达、纯化及酶学性质分析 *[J]. 中国生物工程杂志, 2019, 39(12): 24-34.