Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2022, Vol. 42 Issue (4): 33-39    DOI: 10.13523/j.cb.2111027
综述     
组织工程支架制备中超临界CO2技术的应用*
谢佳璇,刘旋**(),刘刚**()
厦门大学公共卫生学院 分子影像暨转化医学研究中心 厦门 361102
Research Progress of Supercritical Carbon Dioxide Technology in Tissue Engineering Scaffolds
XIE Jia-xuan,LIU Xuan**(),LIU Gang**()
Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
 全文: PDF(865 KB)   HTML
摘要:

作为组织工程研究中三大要素之一,组织工程支架可为细胞的附着、迁移和增殖提供理想的环境。传统的组织工程支架制备方法,如粒子沥滤法、相分离法及静电纺丝法等在理论和技术上已较为成熟,但由于大多需要有机溶剂的参与,在制备过程中仍存在有机溶剂难以去除,以及支架孔洞难以控制、连通性较差等问题。超临界二氧化碳(supercritical carbon dioxide,SC-CO2)密度近似液体,黏度和扩散系数近似气体,具有流动性强、溶解能力大、传热效率高等特殊的理化性质,与传统工艺相结合,可在绿色温和的反应体系中有效规避上述问题,在组织工程支架制备及药物负载方面具有广阔前景。

关键词: 组织工程超临界二氧化碳支架制备    
Abstract:

As one of the three major elements in tissue engineering research, tissue engineering scaffolds provide an excellent environment for cell attachment, migration and proliferation. Traditional preparation techniques of polymeric scaffolds for tissue engineering, such as particle leaching, phase inversion and electrospinning, are relatively mature in theory and technology, but since most of them require the participation of organic solvents, there are still problems in the process, like the residual organic solvents, the control of holes and the poor connectivity. Supercritical carbon dioxide (SC-CO2) has a density similar to that of a liquid, while its viscosity and diffusion coefficient is closer to that of a gas, respectively, and it possesses a special performance of physical and chemical properties like strong fluidity, large dissolving power, and high heat transfer efficiency. Combining with traditional technology, it can effectively circumvent the problems mentioned above in a green and gentle system, which has broad prospects in the scaffolds preparation of tissue engineering and drug loading.

Key words: Tissue engineering    Supercritical carbon dioxide(SC-CO2)    Scaffold preparation
收稿日期: 2021-11-11 出版日期: 2022-05-05
ZTFLH:  Q819  
基金资助: * 国家重点研发计划(2017YFA0205201);国家自然科学基金杰出青年基金(81925019);中国博士后科学基金特别资助(2021T140399);中国博士后科学基金面上资助(021M691888)
通讯作者: 刘旋,刘刚     E-mail: liuxuan@xmu.edu.cn;gangliu.cmitm@xmu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
谢佳璇
刘旋
刘刚

引用本文:

谢佳璇,刘旋,刘刚. 组织工程支架制备中超临界CO2技术的应用*[J]. 中国生物工程杂志, 2022, 42(4): 33-39.

XIE Jia-xuan,LIU Xuan,LIU Gang. Research Progress of Supercritical Carbon Dioxide Technology in Tissue Engineering Scaffolds. China Biotechnology, 2022, 42(4): 33-39.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2111027        https://manu60.magtech.com.cn/biotech/CN/Y2022/V42/I4/33

图1  二氧化碳的压力-温度的相图[20]
技术名称 技术原理 支架材料 研究结果 参考文献
SC-CO2静电纺丝技术 聚合物溶液或熔融液注入到SC-CO2,在高压静电作用下,经喷头喷射后沉积固化 聚(二甲基硅氧烷)(PDMS)和聚(D,L-乳酸)(PLA) 制备了PDMS和PLA纤维,通过观察室证实了超临界流体静电纺丝的可行性 [21]
聚乙烯吡咯烷酮(PVP) 制备了平均孔径为2~4 μm的聚乙烯吡咯烷酮(PVP)中空纤维 [22]
聚乙烯吡咯烷酮(PVP) 制备了直径低至约1.4 μm的PVP微纤维 [23]
SC-CO2发泡技术 SC-CO2扩散溶解聚合物,通过增塑作用及升温降压,促使气核生长,SC-CO2逸出后,聚合物固化形成多孔结构 多孔聚己内酯(PCL) 制备具有光滑的孔隙表面和互连孔隙的大孔径、可缓释万古霉素的固体多孔材料 [25]
聚乙烯醇-聚乙二醇(PVA-PEG) 制备了聚乙烯醇-聚乙二醇(PVA-PEG)多孔支架 [26]
聚氨酯/聚(D,L-乳酸)(PU/PDLLA) 制备了具有开孔、孔洞均匀并且相互连通结构的聚氨酯/聚(D,L-乳酸)薄膜支架 [27]
SC-CO2相转化技术 SC-CO2作为非溶剂,快速溶解在聚合物/溶剂体系中,诱导聚合物溶液进入非稳态,从而发生相分离 醋酸纤维素 制备了醋酸纤维素薄膜,通过改变操作条件,获得不同膜结构 [29]
聚苯乙烯 制备了多孔非对称聚苯乙烯膜,通过温度和压力控制膜的孔隙率和孔径 [30]
聚-L-丙交酯 制备了聚-L-丙交酯(PLLA)纳米纤维支架,兼具高孔隙率和优良力学性能 [31]
SC-CO2浸渍技术 SC-CO2溶解药物,溶胀聚合物,随后SC-CO2泄去,药物滞留其中 聚(D,L-乳酸)(PDLLA) 制备了浸渍紫杉醇的PDLLA支架 [34]
壳聚糖 制备了适用于口腔黏膜缓释给药的载布洛芬壳聚糖薄膜 [35]
聚(D, L-丙交酯)(PLA)和聚(D,L-丙交酯-共-乙交酯)(PLGA) 制备了载有抗肿瘤药物5-氟尿嘧啶(5-Fu)的PLA/PLGA支架 [36]
表1  超临界CO2技术在组织工程支架制备中的应用及研究
[1] Langer R, Vacanti J. Advances in tissue engineering. Journal of Pediatric Surgery, 2016, 51(1): 8-12.
doi: 10.1016/j.jpedsurg.2015.10.022
[2] Langer R, Vacanti J P. Tissue engineering. Science, 1993, 260(5110): 920-926.
doi: 10.1126/science.8493529 pmid: 8493529
[3] Guan G, da Huo, Li Y Z, et al. Engineering hiPSC-CM and hiPSC-EC laden 3D nanofibrous splenic hydrogel for improving cardiac function through revascularization and remuscularization in infarcted heart. Bioactive Materials, 2021, 6(12): 4415-4429.
doi: 10.1016/j.bioactmat.2021.04.010 pmid: 33997517
[4] Stevens K R, Scull M A, Ramanan V, et al. In situ expansion of engineered human liver tissue in a mouse model of chronic liver disease. Science Translational Medicine, 2017, 9(399): eaah5505.
doi: 10.1126/scitranslmed.aah5505
[5] Orive G, Hernández R M, Gascón A R, et al. Cell encapsulation: promise and progress. Nature Medicine, 2003, 9 (1): 104-10.
doi: 10.1038/nm0103-104
[6] Mandal B B, Kundu S C. Cell proliferation and migration in silk fibroin 3D scaffolds. Biomaterials, 2009, 30(15): 2956-2965.
doi: 10.1016/j.biomaterials.2009.02.006 pmid: 19249094
[7] 贾超. 超临界流体技术制备组织工程三维多孔支架工艺研究. 石家庄: 河北科技大学, 2014.
Jia C. Research on preparation of3D porous scaffold of tissue engineering based on supercritical fluid technology. Shijiazhuang: Hebei University of Science and Technology, 2014
[8] 王身国, 杨健, 蔡晴, 等. 组织工程用生物材料及细胞支架研究进展. 中华整形外科杂志, 2000(6): 328-330.
Wang S G, Yang J, Cai Q, et al. Research progress of biomaterials and cell scaffolds for tissue engineering. Chinese Journal of Plastic Surgery and Burns, 2000(6): 328-330.
[9] Draghi L, Resta S, Pirozzolo M G, et al. Microspheres leaching for scaffold porosity control. Journal of Materials Science Materials in Medicine, 2005, 16(12): 1093-1097.
doi: 10.1007/s10856-005-4711-x
[10] Whang K, Goldstick T K, Healy K E. A biodegradable polymer scaffold for delivery of osteotropic factors. Biomaterials, 2000, 21(24): 2545-2551.
pmid: 11071604
[11] Hong J, Yeo M, Yang G H, et al. Cell-electrospinning and its application for tissue engineering. International Journal of Molecular Sciences, 2019, 20(24): 6208.
doi: 10.3390/ijms20246208
[12] Zhu W, Ma X Y, Gou M L, et al. 3D printing of functional biomaterials for tissue engineering. Current Opinion in Biotechnology, 2016, 40: 103-112.
doi: 10.1016/j.copbio.2016.03.014
[13] Barry J J A, Silva M M C G, Popov V K, et al. Supercritical carbon dioxide: putting the fizz into biomaterials. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 364(1838): 249-261.
[14] 聂凌鸿, 周如金, 彭华松, 等. 超临界二氧化碳的应用研究. 林产化工通讯, 2003, 37(3): 29-34.
Nie L H, Zhou R J, Peng H S, et al. Application study on supercritical carbon dioxide. Journal of Chemical Industry of Forest Products (Bimonthly), 2003, 37(3): 29-34.
[15] Verónico Sánchez F J, Elizalde Solis O, Zamilpa A, et al. Extraction of galphimines from Galphimia glauca with supercritical carbon dioxide. Molecules (Basel, Switzerland), 2020, 25(3): 477.
doi: 10.3390/molecules25030477
[16] White A, Burns D, Christensen T W. Effective terminal sterilization using supercritical carbon dioxide. Journal of Biotechnology, 2006, 123(4): 504-515.
doi: 10.1016/j.jbiotec.2005.12.033
[17] 冯超, 王瑜, 孔令镕, 等. 超临界CO2萃取修复污染土壤的发展与展望. 现代化工, 2020, 40(5): 23-27, 31.
Feng C, Wang Y, Kong L R, et al. Advances on supercritical CO2 extraction for remediation of contaminated soil. Modern Chemical Industry, 2020, 40(5): 23-27, 31.
[18] 董力. 超临界二氧化碳发电技术概述. 中国环保产业, 2017(5): 48-52.
Dong L. Summarization on power technology of supercritical carbon dioxide. China Environmental Protection Industry, 2017(5): 48-52.
[19] Campardelli R, Baldino L, Reverchon E. Supercritical fluids applications in nanomedicine. The Journal of Supercritical Fluids, 2015, 101: 193-214.
doi: 10.1016/j.supflu.2015.01.030
[20] Dunham M. Supercritical Carbon Dioxide Cycles for Generation IV Nuclear Reactors. 2022. http://large.stanford.edu/courses/2014/ph241/dunham1/.
[21] Levit N, Tepper G. Supercritical CO2-assisted electrospinning. The Journal of Supercritical Fluids, 2004, 31(3): 329-333.
doi: 10.1016/j.supflu.2003.12.008
[22] Wahyudiono, Machmudah S, Kanda H, et al. Formation of PVP hollow fibers by electrospinning in one-step process at sub and supercritical CO2. Chemical Engineering and Processing: Process Intensification, 2014, 77: 1-6.
doi: 10.1016/j.cep.2013.12.007
[23] Baldino L, Cardea S, Reverchon E. A supercritical CO2 assisted electrohydrodynamic process used to produce microparticles and microfibers of a model polymer. Journal of CO2 Utilization, 2019, 33: 532-540.
[24] 刘倩倩. 超临界二氧化碳发泡技术制备PLGA多孔组织工程支架研究. 杭州: 浙江大学, 2013.
Liu Q Q. Fabrication of porous PLGA scaffolds using supercritical carbon dioxide for application in tissue engineering. Hangzhou: Zhejiang University, 2013.
[25] García-González C A, Barros J, Rey-Rico A, et al. Antimicrobial properties and osteogenicity of vancomycin-loaded synthetic scaffolds obtained by supercritical foaming. ACS Applied Materials & Interfaces, 2018, 10(4): 3349-3360.
[26] Liu P, Chen W, Liu C, et al. A novel poly (vinyl alcohol)/poly (ethylene glycol) scaffold for tissue engineering with a unique bimodal open-celled structure fabricated using supercritical fluid foaming. Scientific Reports, 2019, 9: 9534.
doi: 10.1038/s41598-019-46061-7
[27] Savaris M, Garcia C S C, Roesch-Ely M, et al. Polyurethane/poly(d, l-lactic acid) scaffolds based on supercritical fluid technology for biomedical applications: studies with L929 cells. Materials Science & Engineering C, Materials for Biological Applications, 2019, 96: 539-551.
[28] 马腾, 陈爱政, 王士斌. 超临界二氧化碳流体发泡技术制备组织工程支架及其泡孔形貌控制研究进展. 中国生物医学工程学报, 2014, 33(4): 467-474.
Ma T, Chen A Z, Wang S B. Research progress in study of tissue engineering scaffolds and their pore morphologies by supercritical CO2 foaming technology. Chinese Journal of Biomedical Engineering, 2014, 33(4): 467-474.
[29] Cardea S, de Marco I. Cellulose acetate and supercritical carbon dioxide: membranes, nanoparticles, microparticles and nanostructured filaments. Polymers, 2020, 12(1): 162.
doi: 10.3390/polym12010162
[30] 刘学武, 陈淑花, 詹世平. 超临界CO2诱导相转化法制备聚苯乙烯膜及膜体系的相图计算. 高等学校化学学报, 2016, 37(8): 1573-1579.
Liu X W, Chen S H, Zhan S P. Experimental study and theoretical phase diagram calculation for polystyrene membranes prepared by supercritical CO2-induced phase inversion†. Chemical Journal of Chinese Universities, 2016, 37(8): 1573-1579.
[31] Deng A H, Chen A Z, Wang S B, et al. Porous nanostructured poly-l-lactide scaffolds prepared by phase inversion using supercritical CO2 as a nonsolvent in the presence of ammonium bicarbonate particles. The Journal of Supercritical Fluids, 2013, 77: 110-116.
doi: 10.1016/j.supflu.2013.02.020
[32] 蔡佩. 超临界流体辅助制备负载型离子液体及其CO2吸附性能. 大连: 大连理工大学, 2017.
Cai P. Preparation of supported ionic liquid using supercritical fluid and CO2 adsorption properties. Dalian: Dalian University of Technology, 2017.
[33] Duarte A R C, Mano J F, Reis R L. Perspectives on: supercritical fluid technology for 3D tissue engineering scaffold applications. Journal of Bioactive and Compatible Polymers, 2009, 24(4): 385-400.
doi: 10.1177/0883911509105796
[34] Yoda S, Sato K, Oyama H T. Impregnation of paclitaxel into poly(dl-lactic acid) using high pressure mixture of ethanol and carbon dioxide. RSC Advances, 2011, 1(1): 156.
doi: 10.1039/c1ra00070e
[35] Tang C, Guan Y X, Yao S J, et al. Preparation of ibuprofen-loaded chitosan films for oral mucosal drug delivery using supercritical solution impregnation. International Journal of Pharmaceutics, 2014, 473(1-2): 434-441.
doi: 10.1016/j.ijpharm.2014.07.039
[36] Cabezas L I, Gracia I, García M T, et al. Production of biodegradable porous scaffolds impregnated with 5-fluorouracil in supercritical CO2. The Journal of Supercritical Fluids, 2013, 80: 1-8.
doi: 10.1016/j.supflu.2013.03.030
[1] 朱帅,金明杰,杨树林. 3D生物打印在软骨修复中的应用*[J]. 中国生物工程杂志, 2021, 41(5): 65-71.
[2] 宋标标,顾奇. 同轴打印小直径组织工程血管*[J]. 中国生物工程杂志, 2021, 41(10): 42-51.
[3] 余幸鸽,林开利. 基于天然水凝胶的生物材料在骨组织工程中的应用*[J]. 中国生物工程杂志, 2020, 40(5): 69-77.
[4] 王元斗,宿烽,李速明. 光交联水凝胶在组织工程中的研究进展[J]. 中国生物工程杂志, 2020, 40(4): 91-96.
[5] 严格,乔韡华,曹红,史嘉玮,董念国. 聚多巴胺的表面修饰功能在组织工程的应用进展*[J]. 中国生物工程杂志, 2020, 40(12): 75-81.
[6] 武慧蓉,温朝辉. 壳聚糖在神经组织工程中的应用 *[J]. 中国生物工程杂志, 2019, 39(6): 73-77.
[7] 康肸,邓爱鹏,杨树林. 壳聚糖基温敏水凝胶的研究进展[J]. 中国生物工程杂志, 2018, 38(5): 79-84.
[8] 郗来顺,云鹏,王元斗,张冠宏,邢泉生,陈阳生,宿烽. 形状记忆聚合物在组织工程中的应用 *[J]. 中国生物工程杂志, 2018, 38(12): 76-81.
[9] 孙怀远,宋晓康,廖跃华,李晓欧. 压电式微喷技术在细胞打印领域的应用*[J]. 中国生物工程杂志, 2018, 38(12): 82-90.
[10] 李大为, 何进, 何凤利, 刘雅丽, 邓旭东, 叶雅静, 尹大川. 丝素蛋白/壳聚糖复合材料在组织工程中应用的研究进展[J]. 中国生物工程杂志, 2017, 37(10): 111-117.
[11] 罗思施, 汤顺清. 琼脂糖在组织工程中的研究进展[J]. 中国生物工程杂志, 2015, 35(6): 68-74.
[12] 王佃亮. 组织器官三维构建及原位组织工程概念——组织工程连载之四[J]. 中国生物工程杂志, 2014, 34(8): 112-116.
[13] 王佃亮. 种子细胞——组织工程连载之三[J]. 中国生物工程杂志, 2014, 34(7): 108-113.
[14] 王佃亮. 组织工程的诞生与发展——组织工程 连载之一[J]. 中国生物工程杂志, 2014, 34(5): 122-129.
[15] 张志强, 黄向华, 赵林远. 微环境对细胞的影响以及仿生学在组织工程支架中的应用[J]. 中国生物工程杂志, 2014, 34(4): 101-109.