Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2018, Vol. 38 Issue (5): 79-84    DOI: 10.13523/j.cb.20180511
综述     
壳聚糖基温敏水凝胶的研究进展
康肸,邓爱鹏,杨树林()
南京理工大学环境与生物工程学院 南京 210094
Research Progress of Chitosan Based Thermosensitive Hydrogels
Xi KANG,Ai-peng DENG,Shu-lin YANG()
School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
 全文: PDF(516 KB)   HTML
摘要:

壳聚糖是一种由甲壳素脱乙酰化得到的氨基多糖,具有生物相容性、低细胞毒性和可生物降解性等特点。壳聚糖/β-甘油磷酸钠溶液温敏水凝胶在组织工程、药物缓释等领域多有报道,其成胶性能取决于凝胶的组分和浓度。针对单纯壳聚糖水凝胶强度较低、降解较快、药物突释等缺陷,通常对壳聚糖进行改性或引入新材料共混,获得更符合实际需要的壳聚糖基温敏水凝胶。对近年来壳聚糖基水凝胶的研究进展进行综述,包括改性壳聚糖、共混体系等,概述了其在组织工程(软骨、血管、神经修复)、药物缓释(癌症药物缓释、糖尿病治疗)领域中研究和应用的新进展,以期为后续温敏水凝胶的进一步研究提供参考。

关键词: 壳聚糖温敏水凝胶组织工程药物缓释    
Abstract:

Chitosan is a biocompatible, low-toxic and biodegradable amino polysaccharide obtained by deacetylation of chitin. The classic gelling system of chitosan/β-sodium glycerophosphate thermosensitive hydrogel has been widely reported in tissue engineering, drug controlled release and other fields. The gels properties depend on the composition and concentration of solutions. To improve the defects of weak mechanical property, rapid degradation and drug burst release, researchers modified chitosan or blended it with other materials, expecting to get better thermosensitive hydrogels based on chitosan. The recent advances in chitosan-based thermosensitive hydrogels including modified chitosan and blend hydrogel are summarized. Also summarizes the applications of those hydrogel in tissue engineering (repair of cartilage, blood vessels and nerve) and drug delivery release (controlled release of cancer drugs, diabetes treatment), in order to provide a reference for further research on the thermosensitive hydrogels.

Key words: Chitosan    Thermosensitive hydrogel    Tissue engineering    Drug release
收稿日期: 2018-01-19 出版日期: 2018-06-05
ZTFLH:  Q819  
通讯作者: 杨树林     E-mail: yshulin@njust.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
康肸
邓爱鹏
杨树林

引用本文:

康肸,邓爱鹏,杨树林. 壳聚糖基温敏水凝胶的研究进展[J]. 中国生物工程杂志, 2018, 38(5): 79-84.

Xi KANG,Ai-peng DENG,Shu-lin YANG. Research Progress of Chitosan Based Thermosensitive Hydrogels. China Biotechnology, 2018, 38(5): 79-84.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20180511        https://manu60.magtech.com.cn/biotech/CN/Y2018/V38/I5/79

[1] Liu M, Ishida Y, Ebina Y , et al. An anisotropic hydrogel with electrostatic repulsion between cofacially aligned nanosheets. Nature, 2015,517(7532):68.
doi: 10.1038/nature14060 pmid: 25557713
[2] Jagur-Grodzinski J . Polymeric gels and hydrogels for biomedical and pharmaceutical applications. Polymers for Advanced Technologies, 2010,21(1):27-47.
doi: 10.1002/pat.1504
[3] Buwalda S J, Boere K W, Dijkstra P J , et al. Hydrogels in a historical perspective: from simple networks to smart materials. Journal of Controlled Release, 2014,190(10):254-273.
doi: 10.1016/j.jconrel.2014.03.052 pmid: 24746623
[4] Yu L, Ding J . Injectable hydrogels as unique biomedical materials. Chemical Society Reviews, 2008,37(8):1473-1481.
doi: 10.1039/b713009k pmid: 18648673
[5] Alvarezlorenzo C, Blancofernandez B, Puga A M , et al. Crosslinked ionic polysaccharides for stimuli-sensitive drug delivery. Advanced Drug Delivery Reviews, 2013,65(9):1148.
doi: 10.1016/j.addr.2013.04.016 pmid: 23639519
[6] Hashemi D A, Mirzadeh H, Imani M , et al. Chitosan/polyethylene glycol fumarate blend film: physical and antibacterial properties. Carbohydrate Polymers, 2013,92(1):48-56.
doi: 10.1016/j.carbpol.2012.09.002 pmid: 23218264
[7] Chung H J, Jin W B, Park H D , et al. Thermosensitive chitosans as novel injectable biomaterials. Macromolecular Symposia, 2005,224(1):275-286.
doi: 10.1002/masy.200550624
[8] Chenite A, Chaput C, Wang D , et al. Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials, 2000,21(21):2155-2161.
doi: 10.1016/S0142-9612(00)00116-2 pmid: 10985488
[9] Chenite A, Buschmann M, Wang D , et al. Rheological characterisation of thermogelling chitosan/glycerol-phosphate solutions. Carbohydrate Polymers, 2001,46(1):39-47.
doi: 10.1016/S0144-8617(00)00281-2
[10] Kim S, Nishimoto S K, Bumgardner J D , et al. A chitosan/β-glycerophosphate thermo-sensitive gel for the delivery of ellagic acid for the treatment of brain cancer. Biomaterials, 2010,31(14):4157.
doi: 10.1016/j.biomaterials.2010.01.139 pmid: 20185170
[11] Wang L, Stegemann J P . Thermogelling chitosan and collagen composite hydrogels initiated with beta-glycerophosphate for bone tissue engineering. Biomaterials, 2010,31(14):3976.
doi: 10.1016/j.biomaterials.2010.01.131 pmid: 2851195
[12] Kafedjiiski K, Krauland A H, Hoffer M H , et al. Synthesis and in vitro evaluation of a novel thiolated chitosan. Biomaterials, 2005,26(7):819-826.
doi: 10.1016/j.biomaterials.2004.03.011 pmid: 15350788
[13] 白林山, 穆盈, 刘会峰 , 等. 含硫壳聚糖衍生物的应用研究进展. 离子交换与吸附, 2010,26(5):475-480.
Bai L S, Mu Y, Liu H F , et al. The recent progress of thiolated chitosan derivatives. Ion Exchange and Adsorption, 2010,26(5):475-480.
[14] Matsuda A, Kobayashi H, Itoh S , et al. Immobilization of laminin peptide in molecularly aligned chitosan by covalent bonding. Biomaterials, 2005,26(15):2273.
doi: 10.1016/j.biomaterials.2004.07.032 pmid: 15585229
[15] Chen C, Dong A, Yang J , et al. Preparation and properties of an injectable thermo-sensitive double crosslinking hydrogel based on thiolated chitosan/beta-glycerophosphate. Journal of Materials Science, 2012,47(5):2509-2517.
doi: 10.1007/s10853-011-6075-6
[16] Liu X, Chen Y, Huang Q , et al. A novel thermo-sensitive hydrogel based on thiolated chitosan/hydroxyapatite/beta-glycerophosphate. Carbohydr Polym, 2014,110(110):62.
doi: 10.1016/j.carbpol.2014.03.065 pmid: 24906729
[17] Jus S, Stachel I, Schloegl W , et al. Cross-linking of collagen with laccases and tyrosinases. Materials Science & Engineering C, 2011,31(5):1068-1077.
doi: 10.1016/j.msec.2011.03.007
[18] Gelse K, P?schl E, Aigner T . Collagens——structure, function, and biosynthesis. Advanced Drug Delivery Reviews, 2003,55(12):1531-1546.
doi: 10.1016/j.addr.2003.08.002 pmid: 14623400
[19] Lee C, Singla A , Y. Biomedical applications of collagen. International Journal of Pharmaceutics, 2001,221(1-2):1.
doi: 10.1016/S0378-5173(01)00691-3
[20] Sun B, Ma W, Su F , et al. The osteogenic differentiation of dog bone marrow mesenchymal stem cells in a thermo-sensitive injectable chitosan/collagen/β-glycerophosphate hydrogel: in vitro and in vivo. Journal of Materials Science Materials in Medicine, 2011,22(9):2111-2118.
doi: 10.1007/s10856-011-4386-4 pmid: 21744102
[21] Klangmuang P, Sothornvit R . Combination of beeswax and nanoclay on barriers, sorption isotherm and mechanical properties of hydroxypropyl methylcellulose-based composite films. LWT - Food Science and Technology, 2016,65(11):222-227.
doi: 10.1016/j.lwt.2015.08.003
[22] Jain A K, S?derlind E, Viridén A , et al. The influence of hydroxypropyl methylcellulose (HPMC) molecular weight, concentration and effect of food on in vivo erosion behavior of HPMC matrix tablets. Journal of Controlled Release, 2014,187(3):50-58.
doi: 10.1016/j.jconrel.2014.04.058 pmid: 24818771
[23] 陈丽嫚, 汪涛, 李康 . 壳聚糖/羟丙基甲基纤维素温敏水凝胶的制备. 高分子材料科学与工程, 2016,32(11):156-161.
doi: 10.16865/j.cnki.1000-7555.2016.11.030
Chen L M, Wang T, Li K . Preparation of chitosan/hydroxypropyl methyl cellulose thermo-sensitive hydrogel. Polymeric Materials Science and Engineering, 2016,32(11):156-161.
doi: 10.16865/j.cnki.1000-7555.2016.11.030
[24] Gao L, Gan H, Meng Z , et al. Effects of genipin cross-linking of chitosan hydrogels on cellular adhesion and viability. Colloids & Surfaces B Biointerfaces, 2014,117(5):398.
doi: 10.1016/j.colsurfb.2014.03.002 pmid: 24675278
[25] Koetting M C, Peters J T, Steichen S D , et al. Stimulus-responsive hydrogels: Theory, modern advances, and applications. Materials Science & Engineering R Reports A Review Journal, 2015,93:1.
doi: 10.1016/j.mser.2015.04.001 pmid: 27134415
[26] Barros S C, Silva A D, Costa D B , et al. Thermo-sensitive chitosan-cellulose derivative hydrogels: swelling behaviour and morphologic studies. Cellulose, 2014,21(6):4531-4544.
doi: 10.1007/s10570-014-0442-9
[27] Wang T, Chen L, Shen T , et al. Preparation and properties of a novel thermo-sensitive hydrogel based on chitosan/hydroxypropyl methylcellulose/glycerol. International Journal of Biological Macromolecules, 2016,93(Pt A):775.
doi: 10.1016/j.ijbiomac.2016.09.038 pmid: 27640090
[28] Hoemann C D, Hurtig M, Rossomacha E , et al. Chitosan-glycerol phosphate/blood implants improve hyaline cartilage repair in ovine microfracture defects. Journal of Bone & Joint Surgery American Volume, 2005,87(12):2671-2686.
[29] Ding K, Zhang Y L, Yang Z , et al. A promising injectable scaffold: The biocompatibility and effect on osteogenic differentiation of mesenchymal stem cells. Biotechnology & Bioprocess Engineering, 2013,18(1):155-163.
doi: 10.1007/s12257-012-0429-z
[30] Qi B W, Yu A X, Zhu S B , et al. Chitosan/poly(vinyl alcohol) hydrogel combined with Ad-hTGF-β1 transfected mesenchymal stem cells to repair rabbit articular cartilage defects. Experimental Biology & Medicine, 2013,238(1):23.
doi: 10.1258/ebm.2012.012223 pmid: 23479760
[31] Jin R, Moreira-Teixeira L, Pj, Karperien M , et al. Injectable chitosan-based hydrogels for cartilage tissue engineering. Biomaterials, 2009,30(13):2544.
doi: 10.1016/j.biomaterials.2009.01.020 pmid: 19176242
[32] Naderi-Meshkin H, Andreas K, Matin M M , et al. Chitosan-based injectable hydrogel as a promising in situ forming scaffold for cartilage tissue engineering. Cell Biology International, 2014,38(1):72.
doi: 10.1002/cbin.10181 pmid: 24108671
[33] Hastings C L, Kelly H M, Murphy M J , et al. Development of a thermoresponsive chitosan gel combined with human mesenchymal stem cells and desferrioxamine as a multimodal pro-angiogenic therapeutic for the treatment of critical limb ischaemia. Journal of Controlled Release, 2012,161(1):73.
doi: 10.1016/j.jconrel.2012.04.033
[34] Gao J, Liu R, Wu J , et al. The use of chitosan based hydrogel for enhancing the therapeutic benefits of adipose-derived MSCs for acute kidney injury. Biomaterials, 2012,33(14):3673.
doi: 10.1016/j.biomaterials.2012.01.061 pmid: 22361096
[35] Jin S K, Kim G H, Da Y K , et al. Chitosan-based hydrogels to induce neuronal differentiation of rat muscle-derived stem cells. International Journal of Biological Macromolecules, 2012,51(5):974-979.
doi: 10.1016/j.ijbiomac.2012.08.007 pmid: 22922106
[36] Huang L K, Chen W M, Lin W Y , et al. Local delivery of rhenium-188 colloid into hepatic tumor sites in rats using thermo-sensitive chitosan hydrogel: effects of gelling time of chitosan as delivery system. Journal of Radioanalytical & Nuclear Chemistry, 2011,290(1):39-44.
doi: 10.1007/s10967-011-1111-1
[37] Lajud S A, Han Z, Chi F L , et al. A regulated delivery system for inner ear drug application. Journal of Controlled Release, 2013,166(3):268-276.
doi: 10.1016/j.jconrel.2012.12.031 pmid: 23313113
[38] Wang J, Chen L M, Jiang Z Q , et al. Thermosensitive hydrogel based on chitosan-gelatin and used for sustained drug release in vitro. Journal of Functional Materials, 2013,44(9):1294-1297.
doi: 10.3969/j.issn.1001-9731.2013.09.019
[39] Zan J, Zhu D, Tan F , et al. Preparation of thermosensitive chitosan formulations containing 5-fluorouracil/poly-3-hydroxybutyrate microparticles used as injectable drug delivery system. Chinese Journal of Chemical Engineering, 2006,14(2):235-241.
doi: 10.1016/S1004-9541(06)60064-5
[40] Peng Q, Sun X, Gong T , et al. Injectable and biodegradable thermosensitive hydrogels loaded with PHBHHx nanoparticles for the sustained and controlled release of insulin. Acta Biomaterialia, 2013,9(2):5063.
doi: 10.1016/j.actbio.2012.09.034 pmid: 23036950
[1] 朱帅,金明杰,杨树林. 3D生物打印在软骨修复中的应用*[J]. 中国生物工程杂志, 2021, 41(5): 65-71.
[2] 宋标标,顾奇. 同轴打印小直径组织工程血管*[J]. 中国生物工程杂志, 2021, 41(10): 42-51.
[3] 余幸鸽,林开利. 基于天然水凝胶的生物材料在骨组织工程中的应用*[J]. 中国生物工程杂志, 2020, 40(5): 69-77.
[4] 王元斗,宿烽,李速明. 光交联水凝胶在组织工程中的研究进展[J]. 中国生物工程杂志, 2020, 40(4): 91-96.
[5] 严格,乔韡华,曹红,史嘉玮,董念国. 聚多巴胺的表面修饰功能在组织工程的应用进展*[J]. 中国生物工程杂志, 2020, 40(12): 75-81.
[6] 武慧蓉,温朝辉. 壳聚糖在神经组织工程中的应用 *[J]. 中国生物工程杂志, 2019, 39(6): 73-77.
[7] 程功,焦思明,任立世,冯翠,杜昱光. 枯草芽孢杆菌壳聚糖酶水解制备低脱乙酰度壳寡糖及其组分分析 *[J]. 中国生物工程杂志, 2018, 38(9): 19-26.
[8] 段思腾,李光然,马义勇,邱裕佳,李宇,王伟. 负载NGF的可注射壳聚糖透明质酸水凝胶材料理化性能及生物相容性研究[J]. 中国生物工程杂志, 2018, 38(4): 70-77.
[9] 郗来顺,云鹏,王元斗,张冠宏,邢泉生,陈阳生,宿烽. 形状记忆聚合物在组织工程中的应用 *[J]. 中国生物工程杂志, 2018, 38(12): 76-81.
[10] 孙怀远,宋晓康,廖跃华,李晓欧. 压电式微喷技术在细胞打印领域的应用*[J]. 中国生物工程杂志, 2018, 38(12): 82-90.
[11] 吴剑荣,彭星桥,詹晓北. 聚唾液酸,一种非GAGs、非免疫原性生物材料的应用研究进展 *[J]. 中国生物工程杂志, 2017, 37(12): 96-102.
[12] 李大为, 何进, 何凤利, 刘雅丽, 邓旭东, 叶雅静, 尹大川. 丝素蛋白/壳聚糖复合材料在组织工程中应用的研究进展[J]. 中国生物工程杂志, 2017, 37(10): 111-117.
[13] 罗思施, 汤顺清. 琼脂糖在组织工程中的研究进展[J]. 中国生物工程杂志, 2015, 35(6): 68-74.
[14] 李婷, 孙静, 赵相哲, 连立强, 谢富强. 骨形成蛋白2/珍珠层粉/壳聚糖支架制备及生物性能研究[J]. 中国生物工程杂志, 2015, 35(11): 1-6.
[15] 王皓, 吴丽, 朱小花, 刘旺旺, 杨公明. 甲壳素脱乙酰酶的研究概况及展望[J]. 中国生物工程杂志, 2015, 35(1): 96-103.