Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2020, Vol. 40 Issue (4): 91-96    DOI: 10.13523/j.cb.1910036
综述     
光交联水凝胶在组织工程中的研究进展
王元斗1,宿烽1,2*,李速明3,*()
1 青岛科技大学高性能聚合物研究院 青岛 266042
2 青岛科技大学化工学院 青岛 266042
3 法国蒙彼利埃大学欧洲膜研究院 蒙彼利埃
Research Progress of Photocrosslinked Hydrogel in Tissue Engineering
WANG Yuan-dou1,SU Feng1,2*,LI Su-ming3,*()
1 Institute of High Performance Polymers, Qingdao University of Science and Technology, Qingdao 266042, China
2 College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
3 European Institute of Membranes, University of Montpellier, 34095 Montpellier Cedex, France
 全文: PDF(392 KB)   HTML
摘要:

由于生物相容性、可降解性、与天然细胞外基质结构的相似性,水凝胶成为组织工程的研究热点与重点。基于原位形成和可注射性、与现有加工技术(3D打印、静电纺丝)的兼容性,光交联水凝胶在组织工程领域广泛应用。综述了近年来光交联水凝胶在组织工程领域的研究进展,包括其在软骨组织、骨组织、脂肪组织、牙周组织和皮肤组织方面的研究思路及应用进展,以期为后续光交联水凝胶作为组织工程支架的研究提供参考。

关键词: 光交联水凝胶组织工程细胞支架    
Abstract:

Due to the biocompatibility, degradability, and similarity to the structure of natural extracellular matrix, hydrogel has become a research hotspot and focus of tissue engineering. Based on in-situ formation and injectability, and compatibility with existing processing technologies (3D printing, electrospinning), photocrosslinked hydrogels are widely used in the field of tissue engineering. In this paper, recent advances in the field of tissue engineering in photocrosslinked hydrogels are reviewed, including new advances in cartilage, bone, adipose and periodontal tissues. The paper reviews the photocrosslinked hydrogels and provides relevant references for future research.

Key words: Photocrosslinked hydrogel    Tissue engineering    Cell scaffold
收稿日期: 2019-10-22 出版日期: 2020-05-18
ZTFLH:  Q819  
通讯作者: 李速明     E-mail: lisuming@hotmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王元斗
宿烽
李速明

引用本文:

王元斗,宿烽,李速明. 光交联水凝胶在组织工程中的研究进展[J]. 中国生物工程杂志, 2020, 40(4): 91-96.

WANG Yuan-dou,SU Feng,LI Su-ming. Research Progress of Photocrosslinked Hydrogel in Tissue Engineering. China Biotechnology, 2020, 40(4): 91-96.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.1910036        https://manu60.magtech.com.cn/biotech/CN/Y2020/V40/I4/91

化学名称 缩写 光源 可聚合单体 文献
1-[4-(2-羟基乙氧基)苯基]-2-羟基-2-甲基-1-丙酮 Irgacure 2959 紫外光 GelMA, MCS, n-armPEG-PCL-AC, SMH, Col-GMA, HA-MA, CLF [16] 、[20] 、[25] 、[26] 、[34] 、[35] 、[36] 、[37] 、[49] 、[50]
苯基-2,4,6-三甲基苯甲酰基次膦酸锂 LAP 紫外光,可见光 PEG-PCL-DA, GelMA, GelNB, GelSH [18] 、[21] 、[31] 、[41] 、[42] 、[43]
2',4',5',7'-四溴荧光素二钠盐 曙红Y 可见光 GelMA, PEGDA, PEGNB [13] 、[14] 、[19]
2-羟基-2-甲基苯丙酮 Irgacure 1173 紫外光 MCS, PEGDA, DMA, GelMA [15] 、[47]
核黄素 维生素B2 可见光 F-HA, MA-CMCS [17]
表1  常用的光引发剂种类和光源
[1] Liu M, Ishida Y, Ebina Y , et al. An anisotropic hydrogel with electrostatic repulsion between cofacially aligned nanosheets. Nature, 2015,517(7532):68-72.
doi: 10.1038/nature14060 pmid: 25557713
[2] Atoufi Z, Kamrava S K, Davachi S M , et al. Injectable PNIPAM/hyaluronic acid hydrogels containing multipurpose modified particles for cartilage tissue engineering: Synthesis, characterization, drug release and cell culture study. International Journal of Biological Macromolecules, 2019,139:1168-1181.
doi: 10.1016/j.ijbiomac.2019.08.101 pmid: 31419553
[3] 赵正德, 陈振银, 张慧楠 , 等. 自组装短肽水凝胶支架三维培养环境对骨髓间充质干细胞生物学特性及心肌方向分化的影响. 中国生物工程杂志, 2017,37(11):45-51.
Zhao Z D, Chen Z Y, Zhang H N , et al. Effects of self-assembling peptide hydrogel scaffolds for three-dimensional culture on biological behavior and capability of myocardium differentiation in bone marrow mesenchymal stem cells. China Biotechnology, 2017,37(11):45-51.
[4] Liu Y, Fan D . Novel hyaluronic acid-tyrosine/collagen-based injectable hydrogels as soft filler for tissue engineering. International Journal of Biological Macromolecules, 2019,141:700-712.
doi: 10.1016/j.ijbiomac.2019.08.233 pmid: 31473315
[5] Solomevich S O, Bychkovsky P M, Yurkshtovich T L , et al. Biodegradable pH-sensitive prospidine-loaded dextran phosphate based hydrogels for local tumor therapy. Carbohydrate Polymers, 2019,226:115308.
doi: 10.1016/j.carbpol.2019.115308 pmid: 31582057
[6] Su F, Wang Y, Liu X , et al. Biocompatibility and in vivo degradation of chitosan based hydrogels as potential drug carrier. Journal of Biomaterials Science, Polymer Edition, 2018,29(13):1515-1528.
doi: 10.1080/09205063.2017.1412244 pmid: 29745306
[7] Ma Z, Ma R, Wang X , et al. Enzyme and pH-responsive 5-flurouracil (5-FU) loaded hydrogels based on olsalazine derivatives for colon-specific drug delivery. European Polymer Journal, 2019,118:64-70.
doi: 10.1016/j.eurpolymj.2019.05.017
[8] Fan X, Yang L, Wang T , et al. pH-responsive cellulose-based dual drug-loaded hydrogel for wound dressing. European Polymer Journal, 2019,121:109290.
doi: 10.1016/j.eurpolymj.2019.109290
[9] Xue H, Hu L, Xiong Y , et al. Quaternized chitosan-matrigel-polyacrylamide hydrogels as wound dressing for wound repair and regeneration. Carbohydrate Polymers, 2019,226:115302.
doi: 10.1016/j.carbpol.2019.115302 pmid: 31582049
[10] 董茂盛, 王佃亮 . 生物支架材料--组织工程连载之二. 中国生物工程杂志, 2014,34(06):122-127.
Dong M S, Wang D L . Biological scaffold materials. China Biotechnology, 2014,34(06):122-127.
[11] 王佃亮 . 组织器官三维构建及原位组织工程概念--组织工程连载之四. 中国生物工程杂志, 2014,34(8):112-116.
doi: 10.13523/j.cb.20140817 pmid: 29980862
Wang D L . Three-dimensional construction of tissue organ and concept of in situ tissue engineering. China Biotechnology, 2014,34(8):112-116.
doi: 10.13523/j.cb.20140817 pmid: 29980862
[12] Ifkovits J L, Burdick J A . Photopolymerizable and degradable biomaterials for tissue engineering applications. Tissue Engineering, 2007,13(10):2369-2385.
doi: 10.1089/ten.2007.0093 pmid: 17658993
[13] Wang Z, Kumar H, Tian Z , et al. Visible light photoinitiation of cell-adhesive gelatin methacryloyl hydrogels for stereolithography 3D bioprinting. ACS Applied Materials and Interfaces, 2018,10(32):26859-26869.
doi: 10.1021/acsami.8b06607 pmid: 30024722
[14] Seeto W J, Tian Y, Pradhan S , et al. Rapid production of cell-laden microspheres using a flexible microfluidic encapsulation platform. Small, 2019,1902058.
doi: 10.1002/smll.201902058 pmid: 31468632
[15] Bian S, Zheng Z, Liu Y , et al. A shear-thinning adhesive hydrogel reinforced by photo-initiated crosslinking as a fit-to-shape tissue sealant. Journal of Materials Chemistry B, 2019,7(42):6488-6499.
doi: 10.1039/c9tb01521c pmid: 31576899
[16] Wu W, Ni Q, Xiang Y , et al. Fabrication of a photo-crosslinked gelatin hydrogel for preventing abdominal adhesion. RSC Advances, 2016,6(95):92449-92453.
doi: 10.1039/C6RA21435E
[17] Han G D, Kim J W, Noh S H , et al. Potent anti-adhesion agent using a drug-eluting visible-light curable hyaluronic acid derivative. Journal of Industrial and Engineering Chemistry, 2019,70:204-210.
doi: 10.1016/j.jiec.2018.10.017
[18] Xu C, Lee W, Dai G , et al. Highly elastic biodegradable single-network hydrogel for cell printing. ACS Applied Materials and Interfaces, 2018,10(12):9969-9979.
doi: 10.1021/acsami.8b01294 pmid: 29451384
[19] Shih H, Liu H Y, Lin C C . Improving gelation efficiency and cytocompatibility of visible light polymerized thiol-norbornene hydrogels via addition of soluble tyrosine. Biomaterials Science, 2017,5(3):589-599.
doi: 10.1039/c6bm00778c pmid: 28174779
[20] Hou P, Zhang N, Wu R , et al. Photo-cross-linked biodegradable hydrogels based on n-arm-poly (ethylene glycol), poly (ε-caprolactone) and/or methacrylic acid for controlled drug release. Journal of Biomaterials Applications, 2017,32(4):511-523.
doi: 10.1177/0885328217730465 pmid: 28899224
[21] Fairbanks B D, Schwartz M P, Bowman C N , et al. Photoinitiated polymerization of PEG-diacrylate with lithium phenyl-2, 4, 6-trimethylbenzoylphosphinate: polymerization rate and cytocompatibility. Biomaterials, 2009,30(35):6702-6707.
doi: 10.1016/j.biomaterials.2009.08.055
[22] Li L, Yu F, Zheng L , et al. Natural hydrogels for cartilage regeneration: modification, preparation and application. Journal of Orthopaedic Translation, 2019,17:26-41.
doi: 10.1016/j.jot.2018.09.003 pmid: 31194006
[23] Yang J, Zhang Y S, Yue K , et al. Cell-laden hydrogels for osteochondral and cartilage tissue engineering. Acta Biomaterialia, 2017,57:1-25.
doi: 10.1016/j.actbio.2017.01.036 pmid: 28088667
[24] Levato R, Webb W R, Otto I A , et al. The bio in the ink: cartilage regeneration with bioprintable hydrogels and articular cartilage-derived progenitor cells. Acta Biomaterialia, 2017,61:41-53.
doi: 10.1016/j.actbio.2017.08.005 pmid: 28782725
[25] Zhou Y, Liang K, Zhao S , et al. Photopolymerized maleilated chitosan/methacrylated silk fibroin micro/nanocomposite hydrogels as potential scaffolds for cartilage tissue engineering. International Journal of Biological Macromolecules, 2018,108:383-390.
doi: 10.1016/j.ijbiomac.2017.12.032 pmid: 29225174
[26] Qi C, Liu J, Jin Y , et al. Photo-crosslinkable, injectable sericin hydrogel as 3D biomimetic extracellular matrix for minimally invasive repairing cartilage. Biomaterials, 2018,163:89-104.
doi: 10.1016/j.biomaterials.2018.02.016 pmid: 29455069
[27] Jia S J, Jing W, Zhang T , et al. Multilayered scaffold with a compact interfacial layer enhances osteochondral defect repair. ACS Applied Materials and Interfaces, 2018,10:20296-22030.
doi: 10.1021/acsami.8b03445 pmid: 29808989
[28] Yousefi A M, Hoque M E, Prasad R G S V , et al. Current strategies in multiphasic scaffold design for osteochondral tissue engineering: a review. Journal of Biomedical Materials Research Part A, 2015,103(7):2460-2481.
doi: 10.1002/jbm.a.35356 pmid: 25345589
[29] Monzon M, Liu C.Z, Sara A , et al. Functionally graded additive manufacturing to achieve functionality specifications of osteochondral scaffolds. Bio-Design and Manufacturing, 2018,1:69-75.
[30] Shim J H, Jang K M, Hahn S K , et al. Three-dimensional bioprinting of multilayered constructs containing human mesenchymal stromal cells for osteochondral tissue regeneration in the rabbit knee joint. Biofabrication, 2016,8(1):014102.
doi: 10.1088/1758-5090/8/1/014102 pmid: 26844597
[31] Liu J, Li L, Suo H , et al. 3D printing of biomimetic multi-layered GelMA/nHA scaffold for osteochondral defect repair. Materials and Design, 2019,171:107708.
doi: 10.1016/j.matdes.2019.107708
[32] Madrid A P M, Vrech S M, Sanchez M A , et al. Advances in additive manufacturing for bone tissue engineering scaffolds. Materials Science and Engineering: C, 2019,100:631-644.
doi: 10.1016/j.msec.2019.03.037
[33] Turnbull G, Clarke J, Picard F , et al. 3D bioactive composite scaffolds for bone tissue engineering. Bioactive Materials, 2018,3(3):278-314.
doi: 10.1016/j.bioactmat.2017.10.001 pmid: 29744467
[34] Zhang T, Chen H, Zhang Y , et al. Photo-crosslinkable, bone marrow-derived mesenchymal stem cells-encapsulating hydrogel based on collagen for osteogenic differentiation. Colloids and Surfaces B: Biointerfaces, 2019,174:528-535.
doi: 10.1016/j.colsurfb.2018.11.050 pmid: 30500741
[35] Bae M S, Ohe J Y, Lee J B , et al. Photo-cured hyaluronic acid-based hydrogels containing growth and differentiation factor 5 (GDF-5) for bone tissue regeneration. Bone, 2014,59:189-198.
doi: 10.1016/j.bone.2013.11.019
[36] Kim S, Kang Y, Mercado-Pagán Á E , et al. In vitro evaluation of photo-crosslinkable chitosan-lactide hydrogels for bone tissue engineering. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2014,102(7):1393-1406.
doi: 10.1002/jbm.b.33118 pmid: 24500890
[37] Kim S, Bedigrew K, Guda T , et al. Novel osteoinductive photo-cross-linkable chitosan-lactide-fibrinogen hydrogels enhance bone regeneration in critical size segmental bone defects. Acta Biomaterialia, 2014,10(12):5021-5033.
doi: 10.1016/j.actbio.2014.08.028
[38] El-Sabbagh A H . Modern trends in lipomodeling. GMS Interdisciplinary Plastic and Reconstructive Surgery DGPW, 2017,6.
doi: 10.3205/iprs000108 pmid: 28401032
[39] Bellini E, Grieco M P, Raposio E . The science behind autologous fat grafting. Annals of Medicine and Surgery, 2017,24:65-73.
doi: 10.1016/j.amsu.2017.11.001 pmid: 29188051
[40] Simonacci F, Bertozzi N, Grieco M P , et al. Procedure, applications, and outcomes of autologous fat grafting. Annals of Medicine and Surgery, 2017,20:49-60.
doi: 10.1016/j.amsu.2017.06.059 pmid: 28702187
[41] Tytgat L, Vagenende M, Declercq H , et al. Synergistic effect of κ-carrageenan and gelatin blends towards adipose tissue engineering. Carbohydrate Polymers, 2018,189:1-9.
doi: 10.1016/j.carbpol.2018.02.002 pmid: 29580385
[42] Tytgat L, Van D L, Van H J , et al. Additive manufacturing of photo-crosslinked gelatin scaffolds for adipose tissue engineering. Acta Biomaterialia, 2019,94:340-350.
doi: 10.1016/j.actbio.2019.05.062 pmid: 31136829
[43] Tytgat L, Van D L, Arevalo M P O , et al. Extrusion-based 3D printing of photo-crosslinkable gelatin and κ-carrageenan hydrogel blends for adipose tissue regeneration. International Journal of Biological Macromolecules, 2019,140:929-938.
doi: 10.1016/j.ijbiomac.2019.08.124 pmid: 31422191
[44] Aminu N, Chan S Y, Yam M F , et al. A dual-action chitosan-based nanogel system of triclosan and flurbiprofen for localised treatment of periodontitis. International Journal of Pharmaceutics, 2019,570:118659.
doi: 10.1016/j.ijpharm.2019.118659 pmid: 31493495
[45] Ducret M, Montembault A, Josse J , et al. Design and characterization of a chitosan-enriched fibrin hydrogel for human dental pulp regeneration. Dental Materials, 2019,35(4):523-533.
doi: 10.1016/j.dental.2019.01.018 pmid: 30712823
[46] Huang C, Bao L, Lin T , et al. Proliferation and odontogenic differentiation of human umbilical cord mesenchymal stem cells and human dental pulp cells co-cultured in hydrogel. Archives of Oral Biology, 2019: 104582.
doi: 10.1016/j.archoralbio.2019.104582 pmid: 31605918
[47] Monteiro N, Thrivikraman G, Athirasala A , et al. Photopolymerization of cell-laden gelatin methacryloyl hydrogels using a dental curing light for regenerative dentistry. Dental Materials, 2018,34(3):389-399.
doi: 10.1016/j.dental.2017.11.020 pmid: 29199008
[48] Chichiricco P M, Riva R, Thomassin J M , et al. In situ photochemical crosslinking of hydrogel membrane for guided tissue regeneration. Dental Materials, 2018,34(12):1769-1782.
doi: 10.1016/j.dental.2018.09.017 pmid: 30336953
[49] Zhao X, Lang Q, Yildirimer L , et al. Photocrosslinkable gelatin hydrogel for epidermal tissue engineering. Advanced Healthcare Materials, 2016,5(1):108-118.
doi: 10.1002/adhm.201500005 pmid: 25880725
[50] Zhao X, Sun X, Yildirimer L , et al. Cell infiltrative hydrogel fibrous scaffolds for accelerated wound healing. Acta Biomaterialia, 2017,49:66-77.
doi: 10.1016/j.actbio.2016.11.017 pmid: 27826004
[1] 朱帅,金明杰,杨树林. 3D生物打印在软骨修复中的应用*[J]. 中国生物工程杂志, 2021, 41(5): 65-71.
[2] 宋标标,顾奇. 同轴打印小直径组织工程血管*[J]. 中国生物工程杂志, 2021, 41(10): 42-51.
[3] 余幸鸽,林开利. 基于天然水凝胶的生物材料在骨组织工程中的应用*[J]. 中国生物工程杂志, 2020, 40(5): 69-77.
[4] 严格,乔韡华,曹红,史嘉玮,董念国. 聚多巴胺的表面修饰功能在组织工程的应用进展*[J]. 中国生物工程杂志, 2020, 40(12): 75-81.
[5] 武慧蓉,温朝辉. 壳聚糖在神经组织工程中的应用 *[J]. 中国生物工程杂志, 2019, 39(6): 73-77.
[6] 康肸,邓爱鹏,杨树林. 壳聚糖基温敏水凝胶的研究进展[J]. 中国生物工程杂志, 2018, 38(5): 79-84.
[7] 郗来顺,云鹏,王元斗,张冠宏,邢泉生,陈阳生,宿烽. 形状记忆聚合物在组织工程中的应用 *[J]. 中国生物工程杂志, 2018, 38(12): 76-81.
[8] 孙怀远,宋晓康,廖跃华,李晓欧. 压电式微喷技术在细胞打印领域的应用*[J]. 中国生物工程杂志, 2018, 38(12): 82-90.
[9] 李大为, 何进, 何凤利, 刘雅丽, 邓旭东, 叶雅静, 尹大川. 丝素蛋白/壳聚糖复合材料在组织工程中应用的研究进展[J]. 中国生物工程杂志, 2017, 37(10): 111-117.
[10] 罗思施, 汤顺清. 琼脂糖在组织工程中的研究进展[J]. 中国生物工程杂志, 2015, 35(6): 68-74.
[11] 王佃亮. 组织器官三维构建及原位组织工程概念——组织工程连载之四[J]. 中国生物工程杂志, 2014, 34(8): 112-116.
[12] 王佃亮. 种子细胞——组织工程连载之三[J]. 中国生物工程杂志, 2014, 34(7): 108-113.
[13] 王佃亮. 组织工程的诞生与发展——组织工程 连载之一[J]. 中国生物工程杂志, 2014, 34(5): 122-129.
[14] 张志强, 黄向华, 赵林远. 微环境对细胞的影响以及仿生学在组织工程支架中的应用[J]. 中国生物工程杂志, 2014, 34(4): 101-109.
[15] 王佃亮. 组织工程产品的种类及应用——组织工程连载之六[J]. 中国生物工程杂志, 2014, 34(11): 125-129.