Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2014, Vol. 34 Issue (4): 101-109    DOI: 10.13523/j.cb.20140416
综述     
微环境对细胞的影响以及仿生学在组织工程支架中的应用
张志强, 黄向华, 赵林远
河北医科大学附属第二医院 石家庄 050000
The Effects of Microenvironment on Cells and The Application of Bionics in Tissue Engineering Scaffolds
ZHANG Zhi-qiang, HUANG Xiang-hua, ZHAO Lin-yuan
The Second Hospital of HeBei Medical University, Shijiazhuang 050000, China
 全文: PDF(465 KB)   HTML
摘要:

微环境影响着细胞的增殖、迁移、分化以及细胞功能,细胞微环境影响细胞命运的因素包括细胞之间相互作用、细胞与细胞外基质相互作用、可溶性信号分子以及缺氧和营养对细胞的影响。组织工程支架的制备就是要利用仿生学原理最大程度模拟细胞微环境,从而应用于细胞行为研究以及临床治疗。全面了解细胞微环境对细胞的影响因素是制备组织工程支架的重要条件,而组织工程支架的研究也进一步推动了细胞微环境对细胞影响的认识。组织工程支架研究在组织工程研究中仍具有广阔前景,新的制备工艺也在组织工程支架研究中发挥着巨大推动作用。

关键词: 微环境细胞仿生学组织工程支架    
Abstract:

Microenvironment effects proliferation, migration and functions of cells. The factors of microenvironment that effect fate of cells include interactions between cells and extracellular matrix, soluble signal molecules, anoxia and nutrition. To prepare engineering tissue scaffold need to simulate the cells microenvironment furthest following the bionics theory so that the scaffold can be used in studies of cell behaviour and clinical therapy. Comprehensive understanding the effects factors of microenvironment on cells played an important role on tissue engineering scaffold preparation, and the studies about tissue engineering scaffold also promoted the knowledge about microenvironment effect on cells. Researches on tissue engineering scaffolds have broad prospects in the field of tissue engineering. And new preparation techniques also play a huge role in promoting the research on tissue engineering scaffold.

Key words: Microenvironment    Cell    Bionics    Tissue engineering scaffold
收稿日期: 2014-01-15 出版日期: 2014-04-25
ZTFLH:  Q819  
通讯作者: 黄向华     E-mail: huangxh2003@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

张志强, 黄向华, 赵林远. 微环境对细胞的影响以及仿生学在组织工程支架中的应用[J]. 中国生物工程杂志, 2014, 34(4): 101-109.

ZHANG Zhi-qiang, HUANG Xiang-hua, ZHAO Lin-yuan. The Effects of Microenvironment on Cells and The Application of Bionics in Tissue Engineering Scaffolds. China Biotechnology, 2014, 34(4): 101-109.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20140416        https://manu60.magtech.com.cn/biotech/CN/Y2014/V34/I4/101


[1] Moore K A, Lemischka I R. Stem cells and their niches. Science, 2006, 311(5769): 1880-1885.

[2] 刘晓芳,王延洲,徐惠成,等.微环境对间充质干细胞向平滑肌细胞定向分化的影响. 细胞生物学杂志,2009,31(5):621-624. Liu X F, Wang Y Z, Xu H C, et al. The effect of microenvironment on mesenchymal stem cells differentiation directed to smooth muscle cell. Chinese Journal of Cell Biology, 2009, 31(5): 621-624.

[3] Cunha G R, Fuji H, Neubauer B L. Epithelial-mesenchymal interactions in prostatic development. I. Morphological observations of prostatic induction by urogenital sinus mesenchyme in epithelium of the adult rodent urinary bladder. The Journal of Cell Biology, 1983, 96: 1662-1670.

[4] Cunha G R. Role of mesenchymal-epithelial interactions in normal and abnormal development of the mammary gland and prostate. Cancer, 1994, 74(3 Suppl): 1030-1044.

[5] Rubio D, Garcia S, De la Cueva, et al. Human mesenchymal stem cell transformation is associated with a mesenchymal-epithelial transition. Experimental Cell Research, 2008, 314(4): 691-698.

[6] Keiko Inada, Shinji Hayashi, Taisen Iguchi, et al. Establishment of a primary culture model of mouse uterine and vaginal stroma for studying in vitro estrogen effects. Experimental Biology and Medicine, 2006, 231(3): 303-310.

[7] Jiarong Liu, Jeremy J Mao, Lili Chen. Epithelial-mesenchymal interactions as a working concept for oral mucosa regeneration. Tissue Engineering Part B: Reviews, 2011, 17(1): 25-31.

[8] 张媛,郭维,胡吟燕,等.大鼠耳蜗毛细胞前体细胞与耳蜗间质细胞共培养的实验研究.听力学及言语疾病杂志,2007,15(3):205-207. Zhang Y, Guo W, Hu Y Y,et al. Co-culture of hair cell progenitor and mesenchymal cell from rat cochlea. Journal of Audiology and Speech Pathology, 2007, 15(3): 205-207.

[9] 张雯碧,程明军,徐丛剑.小鼠骨髓间充质干细胞向子宫内膜上皮细胞方向分化的体外实验.现代妇产科进展,2010,19:257-260. Zhang W B, Cheng M J, Xu C J. In vitro study on differentiation of bone marrow mesenchymal stem cells into endometrial epithelial cells in mice. Progress in Obstetrics and Gynecology, 2010, 19: 257-260.

[10] 陈寅,马南,梅举,等. 体外诱导人骨髓间充质干细胞向Ⅱ型肺泡上皮细胞分化.中国组织工程研究,2012,16(10):1737-1741. Chen Y, Ma N, Mei J, et al. In vitro induction of human bone marrow mesenchymal stem cells to differentiate into typeⅡ alveolar epithelial cells. Journal of Clinical Rehabilitative Tissue Engineering Research, 2012, 16(10): 1737-1741.

[11] Liu J, Huang J, Lin T, et al. Cell-to-cell contact induces human adipose tissue-derived stromal cells to differentiate into urothelium-like cells in vitro. Biochemical and Biophysical Research Communications, 2009, 390(3): 931-936.

[12] Atula S, Grenman R, Syrjnen S. Fibroblasts can modulate the phenotype of malignant epithelial cells in vitro. Experimental Cell Research, 1997, 235(1): 180-187.

[13] 丁斐,刘伟,顾晓松. 再生医学.北京:人民卫生出版社,2012.67. Ding F, Liu W, Gu X S. Regenerative Medicine. Beijing: People's Medical Publishing House, 2012.67.

[14] Kim D H, Provenzano P P, Smith C L, et al. Matrix nanotopography as a regulator of cell function. Journal of Cell Biology, 2012, 197(3): 351-360.

[15] 侯光辉,叶楠,吴静,等. 人骨髓间充质干细胞分化为上皮样细胞的初步研究.中华眼科杂志,2010,46(8):719-724. Hou G H, Ye N, Wu J, et al. Preliminary study on human bone marrow mesenchymal stem cells differentiation into epithelial-like cells. Chinese Journal of Ophthalmology, 2010, 46(8): 719-724.

[16] Ryu J H, Kim I K, Cho S W, et al. Implantation of bone marrow mononuclear cells using injectable fibrin matrix enhances neovascularization in infarcted myocardium. Biomaterials, 2005, 26(3): 319-326.

[17] Wu L, Nahas Z, Kimmerling K A, et al. An injectable adipose matrix for soft-tissue reconstruction. Plastic and Reconstructive Surgery, 2012, 129(6): 1247-1257.

[18] Choi Y C, Choi J S, Kim B S, et al. Decellularized extracellular matrix derived from pocine adipose tissue as a xenogeneic biomaterial for tissue engineering. Tissue Engineering: Part C, 2012, 18(11): 866-876.

[19] Labouesse M. Role of the extracellular matrix in epithelial morphogenesis. Organogenesis, 2012, 8(2): 65-70.

[20] Mettouchi A. The role of extracellular matrix in vascular branching morphogenesis. Cell Adhesion & Migration, 2012, 6(6): 528-534.

[21] Engler A J, Sweeney H L, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell, 2006, 126(4): 677-689.

[22] Birgersdotter A, Sandberg R, Ernberg I. Gene expression perturbation in vitro——A growing case for three-demensional (3D) culture systems. Seminars in Cancer Biology, 2005, 15(5): 405-412.

[23] Kulangara K, Yang Y, Yang J, et al. Nanotopography as modulator of human mesenchymal stem cell function. Biomaterials, 2012, 33(20): 4998-5003.

[24] Lu P, Takai K, Weaver V M, et al. Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harbor Perspectives Biology, 2011, 3(12): a005058.

[25] Sodek K L, Murphy K J, Brown T J, et al. Cell-cell and cell-matrix dynamics in intraperitoneal cancer metastasis. Cancer Metastasis Reviews, 2012, 31(1-2): 397-414.

[26] 丁斐,刘伟,顾晓松. 再生医学.北京:人民卫生出版社,2012,71-74. Ding F, Liu W, Gu X S. Regenerative Medicine. Beijing: People's Medical Publishing House, 2012, 71-74.

[27] Herrmann J L, Abarbanell A M, Wang Y, et al. Transforming growth factor-α enhances stem cell-mediated postischemic myocardial protection. Annals of Thoracic Surgery, 2011, 92(5): 1719-1725.

[28] Nakajima T, Hayashi S, Iguchi T, et al. The role of fibroblast growth factors on the differentiation of vaginal epithelium of neonatal mice. Differentiation, 2011, 82(1): 28-37.

[29] Fatimah S S, Tan G C, Chua K H, et al. Effects of epidermal growth factor on the proliferation and cell cycle regulation of cultured human amnion epithelial cells. Journal of Bioscience and Bioengineering, 2012, 114(2): 220-227.

[30] 杜杰,高小青,吴岩,等.甲状腺激素对大鼠骨髓间充质干细胞分化为少突胶质细胞的影响.中国组织工程研究与临床康复,2009,13(1):31-34. Du J, Gao X Q, Wu Y, et al. Effects of thyroid hormone on differentiation of rat bone marrow mesenchymal stem cells into oligodendrocytes. Journal of Clinical Rehabilitative Tissue Engineering Research, 2009, 13(1): 31-34.

[31] 陈昕,丁寅,蔡川,等. 雌激素对老年大鼠脂肪干细胞体外诱导成骨能力的影响.口腔医学研究,2010,26(3):340-342. Chen X, Ding Y, Cai C, et al. Role of 17-β estradiol in osteogenic differentiation of rat adipose-derived stromal cells. Journal of Oral Science Research, 2010, 26(3): 340-342.

[32] 朱晓斐,王飏,金岩,等. 雌激素剂量依赖性促进小鼠骨髓间充质干细胞的成骨分化.中国组织工程研究,2012,16(19):3433-3437. Zhu X F, Wang Y, Jin Y, et al. Estrogen promotes osteogenic differentiation of mouse bone marrow mesenchymal stem cells in a dose-dependent manner. Journal of Clinical Rehabilitative Tissue Engineering Research, 2012, 16(19): 3433-3437.

[33] 程姝丽,丁寅.雌激素对小鼠骨髓间充质干细胞凋亡的抑制作用及其机制研究.细胞分子免疫学杂志,2012,28(5):514-516. Cheng S L, Ding Y. Research of estrogen's inhibition on mouse bone marrow mesenchymal stem cells'apoptosis and its mechanism. Journal of Cellular and Molecular Immunology, 2012, 16(19): 3433-3437.

[34] Vater C, Kasten P, Stiehler M. Culture media for the differentiation of mesenchymal stromal cells. Acta Biomaterialia, 2011, 7(2): 463-477.

[35] 李宁,吴桂英,李启明,等.不同氧浓度微环境对大鼠骨髓间充质干细胞增殖的影响实验研究.重庆医学,2009,38(8):891-893. Li N, Wu G Y, Li Q M, et al. Effects of different oxygen concentration microenvironment on the proliferation of rat bone marrow stromal stem cells. Chongqing Medicine, 2009, 38(8): 891-893.

[36] 黄姣. 低氧微环境对骨髓间充质干细胞成骨分化影响的研究.重庆:重庆医科大学,2012. Huang J. The study of the effect of hypoxia on osteogenesis of bone marrow mesenchymal stem cells in rats. Chongqing:Chongqing Medical University, 2012.

[37] Xu N,Liu H,Qu F,et al. Hypoxia inhibits the differentiation of mesenchymal stem cells into osteoblasts by activation of Notch signaling. Experimental and Molecular Pathology, 2013, 94(1): 33-39.

[38] 郑景辉,李勇华,王丽萍,等. 不同血清微环境对大鼠骨髓间充质干细胞体外培养的影响.中国组织工程研究与临床康复, 2010,14(14): 2497-2502. Zheng J H, Li Y H, Wang L P, et al. Effects of different serum microenvironments on culture of rat bone marrow mesenchymal stem cells in vitro. Journal of Clinical Rehabilitative Tissue Engineering Research, 2010, 14(14): 2497-2502.

[39] 孔祥伟,丁寅,金岩.炎症与干细胞:niche——不只是温床.医学争鸣,2012, 3(2):21-23. Kong X W, Ding Y, Jin Y. Inflammation and stem cells: niche - not just hotbed. Negative, 2012, 3(2): 21-23.

[40] Ma K, Laco F, Ramakrishna S, et al. Differentiation of bone marrow-derived mesenchymal stem cells into multi-layered epidermis-like cells in 3D organotypic coculture. Biomaterials, 2009, 30(19): 3251-3258.

[41] Nagori C B, Panchal S Y, Patel H. Endometrial regeneration using autologous adult stem cells followed by conception by in vitro fertilization in a patient of severe Asherman's syndrome. Human Reproductive Sciences, 2011, 4(1): 43-48.

[42] 王振显,蔡文清,宋永周,等.膀胱匀浆上清液在大鼠骨髓间充质干细胞诱导分化为平滑肌样细胞中的作用.中国组织工程研究与临床康复,2008,12(8):1422-1425. Wang Z X, Cai W Q, Song Y Z, et al. Rat bone marrow mesenchymal stem cells differentiate into smooth muscle cells in vitro induced by the supernatant of homogenized bladders. Journal of Clinical Rehabilitative Tissue Engineering Research, 2008, 12(8): 1422-1425.

[43] 刘芳,何援利. 模拟子宫内膜微环境体外诱导骨髓间充质干细胞向子宫内膜上皮细胞分化的实验研究.现代妇产科进展,2012,21(11):878-881. Liu F, He Y L. Differentiation of rabbits bone marrow mesenchymal stem cells into endometrial epithelial cells in simulate endometrial microenvironment in vitro. Progress in Obstetrics and Gynecology, 2012, 21(11):878-881.

[44] Pampalni F, Reynaud E G, Stelzer E H. The third dimension bridges the gap between cell culture and live tissue. Nature Reviews Molecular Cell Biology, 2007, 8(10): 839-845.

[45] Ghibaudo M, Trichet L, Le Digabel J, et al. Substrate topography induces a crossover from 2D to 3D behavior in fibroblast migration. Biophysical Journal, 2009, 97(1): 357-368.

[46] Kropp B P, Eppley B L, Prevel C D, et al. Experimental assessment of small intestinal submucosa as a bladder wall substitute. Urology, 1995,46(3):396-400.

[47] 李庆林,刘伟,李文芳,等. 小肠粘膜下层无细胞基质作为阴道平滑肌细胞载体的可行性.中国组织工程研究与临床康复,2010,14(47):8741-8746. Li Q L, Liu W, Li W F, et al. Feasibility of small intestinal submucosa acellular matrix as vaginal smooth muscle cell carrier. Journal of Clinical Rehabilitative Tissue Engineering Research, 2010, 14(47): 8741-8746.

[48] 谭波,魏人前,杨志明,等.食管黏膜上皮细胞与SIS复合培养及生物学特性研究.中国修复重建外科杂志,2008,22(6):742-746. Tan B, Wei R Q, Yang Z M, et al. An experimental study of coculture of esophageal mucosa epithelial cells with SIS and their biological characteristics. Chinese Journal of Reparative and Reconstructive Surgery, 2008, 22(6): 742-746.

[49] Nubile M, Dua H S, Lanzini M, et al. In vivo analysis of stromal integration of multilayer amniotic membrane transplantation in corneal ulcers.American Journal of Ophthalmology, 2011, 151(5): 809-822.

[50] Shay E, Kheirkhah A, Liang L, et al. Amniotic membrane transplantation as a new therapy for the acute ocular manifestations of Stevens-Johnson syndrome and toxic epidermal necrolysis. Survey of Ophthalmology, 2009, 54(6): 686-696.

[51] Mohamed I. Amer, Karim Abd-El-Maeboud, Amal Alloub. Anion graft as a possible source of stem cells for endometrial regeneration after lysis of severe intrauterine adhesions. Middle East Fertility Society Journal, 2012, 17(1): 54-56.

[52] 闫国和,粟永萍,艾国平,等.羊膜负载骨髓间充质干细胞与表皮细胞对放创性皮肤损伤促愈合研究.中国修复重建外科杂志,2004,18(6):497-501. Yan G H, Su Y P, Ai G P,et al. Study on amniotic membrane loaded with marrow mesenchymal stem cells and epidermis cells on promoting healing of wound combined with radiation injury. Chinese Journal of Reparative and Reconstructive Surgery, 2004, 18(6): 497-501.

[53] 张明乐,黄向华,李雅钗,等.小鼠阴道上皮细胞与猪脱细胞真皮基质-纤维蛋白凝胶构建组织工程阴道的初步研究.实用妇产科杂志,2012,28(8):639-642. Zhang M L, Huang X H, Li Y C, et al. Primary experimental study on tissue engineering vagina constructed by mouse vaginal epithelial cells and porcine acellular dermal matrix (PADM)-Fibrin gel. Journal of Practical Obstetrics and Gynecology, 2012, 28(8): 639-642.

[54] 耿献辉,余春艳,邓志宏,等. 骨髓间充质干细胞复合组织工程化脱细胞真皮基质构建组织工程皮肤.中国美容医学,2007,16(4):443-446. Geng X H, Yu C Y, Deng Z H, et al. Construction of tissue-engineered skin with BMSCs and tissue-engineered acellular dermal matrix. Chinese Journal of Aesthetic Medicine, 2007, 16(4): 443-446.

[55] Xu H, Sandor M, Qi S, et al. Implantation of a porcine acellular dermal graft in a primate model of rotator cuff repair. Journal of Shoulder and Elbow Surgery.2012, 21(5): 580-588.

[56] Zhu W D, Xu Y M, Feng C,et al. Bladder reconstruction with adipose-derived stem cell-seeded bladder acellular matrix grafts improve morphology composition. World Journal of Urology, 2010, 28(4): 493-498.

[57] 赵莉,何晨光,高永娟,等. PLGA的不同组成对支架材料性能的影响研究.中国生物工程杂志,2008,28(5):22-28. Zhao L, He C G, Gao Y J, et al. Study on influence of copolymer compositions of PLGA on properties of scaffolds. China Biotechnology, 2008, 28(5): 22-28.

[58] 林小敏,关水,葛丹,等.壳聚糖-明胶-透明质酸-硫酸肝素复合支架的制备及性能评价.高校化学工程学报,2012,26(2):265-270. Lin X M, Guan S, Ge D, et al. Fabrication and characteristics of chitosan-gelatin-hyaluronate-heparan sulfate scaffolds. Journal of Chemical Engineering of Chinese University, 2012, 26(2): 265-270.

[59] 张文元,杨亚冬,房国坚. 壳聚糖-丝素复合支架材料与骨髓间充质干细胞相容性的研究.中国卫生检验杂志,2010,20(12):3084-3086. Zhang W Y, Yang Y D, Fang G J. Cytocompatibility study of chitosan-silk fibroin composite scaffold material with BMSCs in vitro. Chinese Journal of Health Laboratory Technology, 2010, 20(12): 3084-3086.

[60] Oh S H, Park I K, Kim J M, et al. In vitro and in vivo characteristics of PCL scaffolds with pore size gradient fabricated by a centrifugation method. Biomaterials, 2007, 28(9): 1664-1671.

[61] IIie I, IIie R, Mocan T, et al. Influence of nanomaterials on stem cell differentiation: designing an appropriate nanobiointerface. International Journal of Nanomedicine, 2012, 7: 2211-2225.

[62] Elias K L, Price R L, Webster T J. Enhanced functions of osteoblasts on nanometer diameter carbon fibers. Biomaterials, 2002, 23(15): 3279-3287.

[63] Dalby M J, McCloy D, Robertson M, et al. Osteoprogenitor response to semi-ordered and random nanotopographies. Biomaterials 2006, 27(15): 2980-2987.

[64] Yim E K, Darling E M, Kulangara K, et al. Nanotopography-induced changes in focal adhesions, cytoskeletal organization, and mechanical properties of human mesenchymal stem cells. Biomaterials, 2010, 31(6): 1299-1306.

[65] Mahairaki V, Lim S H, Christopherson G T, et al. Nanofiber matrices promote the neuronal differentiation of human embryonic stem cell-derived neural precursors in vitro. Tissue Engineering: Part A, 2011, 17(5-6): 855-863.

[66] Jiang X, Cao H Q, Shi L Y, et al. Nanofiber topography and sustained biochemical signaling enhance human mesenchymal stem cell neural commitment. Acta Biomaterialia, 2012, 8(3): 1290-1302.

[67] Zhang A P, Qu X, Soman P, et al. Rapid fabrication of complex 3D extracellular microenvironments by dynamic optical projection stereolithography. Advanced Materials. 2011, 24(31): 4266-4270.

[68] Fielding G, Bose S. SiO2 and ZnO dopants in three-dimensionally printed tricalcium phosphate bone tissue engineering scaffolds enhance osteogenesis and angiogenesis in vivo. Acta Biomaterialia, 2013, 9(11): 9137-9148.

[69] Cervantes T M, Bassett E K, Tseng A, et al. Design of composite scaffolds and three-dimensional shape analysis for tissue-engineered ear. Journal of The Royal Society Interface, 2013, 10(87): 20130413.

[70] Reiffel A J, Kafka C, Hernandez K A, et al. High-fidelity tissue engineering of patient-specific auricles for reconstruction of pediatric microtia and otherauricular deformities. PLoS One, 3013, 8(2): e56506.

[71] Hui E E, Bhatia S N. Micromechanical control of cell-cell interactions. Proc Natl Acad Sci USA, 2007, 104(14): 5722-5726.

[1] 谈沛林,张莹,张竣,高笑,王树坤,侯琳,袁增强. 二甲双胍(Metformin)在少突胶质前体细胞分化中的作用和机制*[J]. 中国生物工程杂志, 2021, 41(9): 1-9.
[2] 杨柳,牟豪,许国洋,白运川,余远迪. 培养山羊痘病毒常用细胞在X-gal环境中的显色差异分析*[J]. 中国生物工程杂志, 2021, 41(9): 48-54.
[3] 赵梦泽,李凤智,王鹏银,李剑,徐寒梅. PD-L1和VEGF双靶点联合阻断治疗的研究进展[J]. 中国生物工程杂志, 2021, 41(9): 71-77.
[4] 钱昱,丁晓雨,刘志强,袁增强. 基因修饰人多能干细胞的高效单克隆建系方法[J]. 中国生物工程杂志, 2021, 41(8): 33-41.
[5] 冯昭,李江浩,王佳华. 刺槐核糖体蛋白同源基因RpRPL22在共生结瘤过程中功能研究[J]. 中国生物工程杂志, 2021, 41(7): 10-21.
[6] 陈修月,周文锋,何庆,苏冰,邹亚文. 噬菌体Qβ病毒样颗粒的制备、纯化及鉴定[J]. 中国生物工程杂志, 2021, 41(7): 42-49.
[7] 袁博鑫,吴昊,闫春晓,路娟娥,魏振平,乔建军,阮海华. 病原细菌效应蛋白靶向宿主细胞核研究进展*[J]. 中国生物工程杂志, 2021, 41(7): 81-90.
[8] 李开秀,司维. 间充质干细胞来源的外泌体治疗炎症性肠病研究进展*[J]. 中国生物工程杂志, 2021, 41(7): 66-73.
[9] 王宇轩,陈婷,张永亮. MiR-148生物学功能研究进展*[J]. 中国生物工程杂志, 2021, 41(7): 74-80.
[10] 胡暄,王松,于学玲,张晓鹏. 不稳定EGFP细胞模型的构建及其在基因编辑体系评价中的应用*[J]. 中国生物工程杂志, 2021, 41(5): 17-26.
[11] 陶守松,任广明,尹荣华,杨晓明,马文兵,葛志强. 敲低去泛素化酶USP13抑制K562细胞的增殖*[J]. 中国生物工程杂志, 2021, 41(5): 1-7.
[12] 陈玉琼,谭文华,刘海峰,陈根. miR-29a通过调控PTEN表达对脂多糖诱导人肺微血管内皮细胞损伤的保护作用研究*[J]. 中国生物工程杂志, 2021, 41(5): 8-16.
[13] 段阳阳,张凤亭,成江,石瑾,杨娟,李海宁. SIRT2抑制对MPP+诱导的帕金森病细胞模型凋亡和线粒体动态平衡的影响*[J]. 中国生物工程杂志, 2021, 41(4): 1-8.
[14] 路玉祥,李元,方丹丹,王学博,杨万鹏,楚元奎,杨华. MiR-5047在乳腺癌细胞增殖迁移中的作用及表达调控*[J]. 中国生物工程杂志, 2021, 41(4): 9-17.
[15] 徐安健,李艳萌,乌姗娜,张蓓,姚静怡. PHP14通过与Vimentin相互作用影响TGF-β诱导的肝细胞AML-12上皮-间质转化*[J]. 中国生物工程杂志, 2021, 41(2/3): 1-6.